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I. Introduction

In his seminal 1987 monograph, Robert E. Lucas Jr. concludes that the welfare

benefit of eliminating all consumption fluctuations in the U.S. economy is triv-

ially small, hence challenging the desirability of policies aimed at insulating the

economy from cyclical fluctuations. As Lucas emphasizes,1 this result is obtained

without taking a stand on the origins of aggregate fluctuations, and it relies solely

on the specifications of preferences (a representative agent with time and state

separable power utility preferences with a constant coefficient of relative risk aver-

sion) and the data generating process (i.i.d. log-normal aggregate consumption

growth rate).

Nevertheless, it is exactly these two assumptions that make Lucas’ calculations

questionable. This is because evaluating the welfare cost of business cycles is

tantamount to pricing the risk that households face due to aggregate fluctuations.

And, an extensive literature has documented how Lucas’ specification grossly

underestimates the market price of risk in the U.S. economy: e.g., the average

premium on a broad U.S. stock market index over and above short-term Treasury

Bills has been about 7% per year over the last century, while Lucas’ specification

would imply a premium of less than 1%.2 Lucas’ specification also fails to explain

the significant cross-sectional differences in average returns between different asset

classes (see e.g., Lars Peter Hansen and Kenneth J. Singleton (1983), Martin

Lettau and Sydney Ludvigson (2001), Jonathan A. Parker and Christian Julliard

(2005), Christian Julliard and Anisha Ghosh (2012)).

Indeed, exactly due to the inability of the power utility with log-normal shocks

to match households’ preferences toward risk revealed by the prices of financial

assets, a burgeoning literature, based on modifying the preferences of investors

and/or the dynamic structure of the economy, has developed. In these models,

the pricing kernel (hereafter referred to as the Stochastic Discount Factor or SDF)

can be factored into an observable component consisting of a parametric function

1“these calculations rest on assumptions about preferences only, and not about any particular mech-
anism equilibrium or disequilibrium – assumed to generate business cycles”, Lucas (1987).

2This discrepancy is the so-called Equity Premium Puzzle, first identified by Rajnish Mehra and
Edward C. Prescott (1985).
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of consumption growth, as with power utility, and a model-specific component.

That is, the pricing kernel, M , in these models is of the form:

(1) Mt+1 = (Ct+1/Ct)
−γ ψt+1.

The Robert E. Lucas (1987) original setting is nested within this family, corre-

sponding to the case in which ψt is a positive constant. Prominent examples of

models in this class are: habit formation models (see, e.g., John Y. Campbell and

John H. Cochrane (1999), Lior Menzly, Tano Santos and Pietro Veronesi (2004));

long run risks models (e.g., Ravi Bansal and Amir Yaron (2004)); models with

complementarities in consumption (e.g., Monika Piazzesi, Martin Schneider and

Selale Tuzel (2007), Motohiro Yogo (2006)); models in which ψt captures aggre-

gation over heterogeneous agents who face uninsurable idiosyncratic shocks to

their labor income (e.g. George M. Constantinides and Darrell Duffie (1996),

George M. Constantinides and Anisha Ghosh (2017)), as well as solvency con-

straints (e.g. Hanno N. Lustig and Stijn G. Van Nieuwerburgh (2005)). While

the above models are all based on rational expectations, the multiplicative decom-

position of the pricing kernel in Equation (1) also encompasses behavioral models

– in such cases, the ψt captures deviations from rational expectations (e.g. Suley-

man Basak and Hongjun Yan (2010), Lars Peter Hansen and Thomas J. Sargent

(2010)).

Estimates of the cost of business cycles vary widely across these model speci-

fications (see, e.g., Gadi Barlevy (2005) for a survey). Moreover, as with Lucas’

original specification, in order for any of the more recent models to constitute

a good choice for welfare cost calculations, it should accurately price broad cat-

egories of assets and, therefore, we reflective of agents’ attitude towards risk.

Anisha Ghosh, Christian Julliard and Alex Taylor (2017) evaluate the empiri-

cal pricing performance of several of these models and show that they perform

quite poorly, producing large pricing errors and low (and often negative) cross-

sectional R2. Therefore, the shortcomings of using Lucas’ specification for welfare

cost calculations also apply to the more recent advances.
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In this paper, we do not take a stand on either the full specification of investors’

preferences, or on the true dynamics of the underlying state variables, or on the

latter dynamics as perceived by the investor, i.e. her beliefs. Importantly, our

approach does not require investors’ beliefs to be rational. The approach relies on

the insight that asset prices contain information about the stochastic discounting

of the different possible future states and, therefore, use observed asset prices

to recover the SDF. Specifically, we assume that the underlying SDF has the

multiplicative form in Equation (1). We use asset returns and consumption data

to extract, non-parametrically, the minimum relative entropy estimate of the

ψ-component of the pricing kernel M such that the resultant M satisfies the

unconditional Euler equations for the assets, i.e. successfully prices broad cross-

sections of assets. This information-theoretic approach, that has its origins in

the physical sciences, adds to the standard power utility kernel the minimum

amount of additional information needed to price assets perfectly, i.e. satisfy

the Euler equations. We refer to the estimated M as the information SDF (I-

SDF) because of the information-theoretic methodology used to recover it. In

the absence of knowledge of the true SDF, our framework offers a more robust

approach to identifying it, while incorporating the central economic insight that

aggregate consumption risk represents an important source of priced risk.

With this I-SDF at hand, we obtain the cost of aggregate consumption fluc-

tuations as the ratio of the (shadow) prices of two hypothetical securities – a

claim to a stabilized version of the aggregate consumption stream from which

certain types of fluctuations (e.g., all fluctuations or fluctuations corresponding

to business cycle frequencies only) have been removed, and a claim to the ac-

tual aggregate consumption stream. Fernando Alvarez and Urban J. Jermann

(2004) show that, in the context of a representative agent economy, the above

ratio measures the marginal cost of consumption fluctuations, defined as the per

unit benefit of a marginal reduction in consumption fluctuations, expressed as a

percentage of lifetime consumption. Our approach allows us to estimate the term

structure of the cost of fluctuations, i.e. how the cost (or, the welfare benefit of

removing fluctuations) rises with the elimination of aggregate fluctuations over
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each additional future period.

Our information-theoretic approach to the recovery of the SDF corresponds

to the Empirical Likelihood (EL) estimator of Art B. Owen (2001) and the Ex-

ponential Tilting (ET) estimator of Y. Kitamura and M. Stutzer (1997). Using

this methodology to recover the (multiplicative) missing component of the SDF

was originally proposed in Ghosh, Julliard and Taylor (2017). The I-SDF, unlike

Lucas’ original specification, accurately prices broad cross-sections of assets.3 It,

therefore, offers a more reliable choice for assessing investors’ attitude toward

risk.

We first apply our methodology to assess the welfare benefits of economic stabi-

lization on average, i.e. averaged across all possible states. We find that the cost

of business cycle fluctuations in consumption is large and constitutes between a

quarter to a third of the cost of all consumption fluctuations. For instance, in

our baseline 1929–2015 sample, when the I-SDF is extracted using nondurables

and services consumption with the excess return on the market portfolio as the

sole asset and a utility curvature parameter γ = 10 in Equation (1), the cost of

all fluctuations over a five-year horizon is estimated at 14.4% (11.9%), while the

corresponding cost of business cycle fluctuations is 3.6% (3.1%) with the EL (ET)

approach. When total (instead of nondurables and services) consumption expen-

ditures is used to recover the I-SDF, the costs of all fluctuations and business

cycle fluctuations over a 5-year period are both estimated to be even higher at

19.7% (17.3%) and 5.1% (4.6%), respectively, with the EL (ET) approach. The

corresponding costs obtained with Lucas’ specification are typically an order of

magnitude smaller. These conclusions are robust to the set of test assets used

to recover the I-SDF. Our results suggest that economic agents perceive the cost

of aggregate fluctuations to be substantial and that business cycles constitute a

substantial proportion of this cost.

We next rely on an extension of our methodology – specifically, the Smoothed

3See also Anisha Ghosh, Christian Julliard and Alex Taylor (2022) who show that the I-SDF, es-
timated in a purely out-of-sample fashion, accurately prices the aggregate stock market, broad cross-
sections of equity portfolios constructed by sorting stocks on the basis of different observable charac-
teristics (e.g., size, book-to-market-equity, prior returns, industry), as well as currency portfolios and
portfolios of commodity futures.
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Empirical Likelihood (SEL) estimator of Yuichi Kitamura, Gautam Tripathi and

Hyungtaik Ahn (2004) and the Smoothed Exponential Tilting (SET) estimator

(see, e.g., Anisha Ghosh, Taisuke Otsu and Guillaume Roussellet (2020)) that

extend the EL and ET estimators, respectively, to a conditional setting – to obtain

the cost of all consumption fluctuations in each time period (i.e., in each possible

state of the economy). This amounts to calculating the ratio of the time-t prices of

the claims to the stabilized consumption stream and the actual risky consumption

stream, for each time period t. We find that the cost of consumption fluctuations

is strongly time-varying and countercyclical. In our baseline case, the cost of

all one-year fluctuations varies from 0.15% to 8.0%. Also, the cost is strongly

countercyclical, rising sharply during recessionary episodes. The latter finding

also helps explain the high average cost of business cycle fluctuations that we

estimate. While the precise magnitudes of the costs are somewhat sensitive to the

assumed value of the utility curvature parameter (γ in Equation 1), with higher

values leading to larger costs, the findings that business cycle costs constitute

between a quarter to a third of the costs of all fluctuations, that the cost of

fluctuations is strongly countercyclical, and that the costs are substantially higher

than those implied by Lucas’ specification are robust to perturbations in the value

of this parameter.

Our paper lies at the interface of two, albeit mostly distinct, strands of liter-

ature. It contributes to a growing literature that uses an information-theoretic

(or, relative-entropy minimizing) alternative to the standard generalized method

of moments approach to address a variety of questions in economics and finance.

Information-theoretic approaches were first introduced in financial economics by

Michael Stutzer (1995, 1996) and Kitamura and Stutzer (1997) (see Yuichi Ki-

tamura (2006) for a survey of these methods). Subsequently, these approaches

have been used to assess the empirical plausibility of the rare disasters hypoth-

esis in explaining asset pricing puzzles (see, e.g., Julliard and Ghosh (2012)),

construct diagnostics for asset pricing models (see, e.g., Caio Almeida and René

Garcia (2012), David Backus, Mikhail Chernov and Stanley E. Zin (2013), Caio

Almeida and René Garcia (2016)), construct bounds on the SDF and its com-



THE MARKET COST OF BUSINESS CYCLE FLUCTUATIONS 7

ponents and recover the missing component from a candidate SDF (see, e.g.,

Jaroslav Borovicka, Lars P. Hansen and Jose A. Scheinkman (2016), Ghosh, Jul-

liard and Taylor (2017), Mirela Sandulescu, Fabio Trojani and Andrea Vedolin

(2018)), performance evaluation of funds (see, e.g., Caio Almeida, Kym Ardison

and René Garcia (2019)), and recover investors’ beliefs from observed asset prices

(see, e.g., Lars Peter Hansen (2014), Anisha Ghosh and Guillaume Roussellet

(2019), Xiaohong Chen, Lars P. Hansen and Peter G. Hansen (2020)).

Our paper also contributes to the literature that tries to assess the welfare costs

of aggregate economic fluctuations (see, e.g., Lucas (1987), Ayse Imrohoroglu

(1989), Andrew Atkeson and Christopher Phelan (1994), Maurice Obstfeld (1994),

James Pemberton (1996), Jim Dolmas (1998), Thomas Tallarini (2000), Paul

Beaudry and Carmen Pages (2001), Christopher Otrok (2001), Kjetil Storesletten,

Chris I. Telmer and Amir Yaron (2001), Alvarez and Jermann (2004), Tom Krebs

(2007), Ian Martin (2008), Robert J. Barro (2009), Per Krusell and Anthony A.

Smith (2009), Larry G. Epstein, Emmanuel Farhi and Tomasz Strzalecki (2014),

Hanno N. Lustig, Stijn G. Van Nieuwerburgh and Adrien Verdelhan (2013)).

Most of this literature assumes particular parametric forms for preferences as

well as the data generating process (DGP). Our paper, on the other hand, is

more model-free, not requiring us to fully specify preferences or the DGP.

Our approach is similar in spirit to Alvarez and Jermann (2004) that, to the

best of our knowledge, are the first to have used asset prices to infer bounds on

the welfare cost of business cycle fluctuations. Our results, however, are in stark

contrast to those in Alvarez and Jermann (2004) who argue that, while the cost of

all consumption fluctuations is very high (they report a baseline value of 28.6% in

an infinite-horizon setting), the cost of business cycle fluctuations in consumption

is miniscule, varying from 0.1% to 0.5%. This difference is driven by both our

wholly different methodology to the recovery of the SDF that relies on fewer

assumptions and approximation results and has well-behaved asymptotics, as well

as different approaches to the filtering of the business cycle fluctuations from the

historical consumption series. Recent theoretical studies, that aim to explain the

behavior of asset prices while simultaneously retaining plausible business cycle
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dynamics, have argued for very high costs of business cycles – for example, 29%

in Hang Bai and Lu Zhang (2020) that develops a general equilibrium model with

recursive utility, search frictions, and capital accumulation. Jessie Davis and Gill

Segal (2020) argue that a small component of the business-cycle can be rationally

mistaken to be permanent, thereby understating the importance of business cycle

fluctuations. Our estimate of the cost of business cycles is in line with these

studies, albeit obtained in a more model-free setting and, therefore, more robust

to misspecification.

The reminder of the paper is organized as follows. Section II defines the

cost of aggregate consumption fluctuations and describes an information-theoretic

methodology to estimate this cost. Section III reports the empirical results. Sec-

tion IV assesses the sensitivity of our main findings to alternative values of the

utility curvature parameter. Finally, Section V concludes with suggestions for

future research. The appendix contains simulation evidence on the ability of the

methodology to estimate the cost of fluctuations accurately, a data description,

and a host of robustness checks.

II. Pricing Aggregate Economic Fluctuations

This section defines the welfare costs of fluctuations in aggregate consumption

and proposes a novel procedure to measure this cost. Specifically, in Subsection

II.A, we follow Alvarez and Jermann (2004) and define the marginal cost of ag-

gregate consumption fluctuations, for two alternative definitions of fluctuations.

In Subsection II.B, we propose a novel information-theoretic procedure to mea-

sure the costs of these fluctuations. Throughout this section, uppercase letters

are used to denote random variables and the corresponding lowercase letters to

particular realizations of these variables.

A. The Cost of Aggregate Fluctuations

The cost (or, the market price) of consumption fluctuations, ω0, is defined as

the ratio of the prices of two securities: a claim to a stable version of the aggregate

consumption stream from which certain fluctuations have been removed, and a
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claim to the actual aggregate consumption stream:

(2) ω0 =
V0

[{
Cstabt

}
t≥1

]
V0

[
{Ct}t≥1

] − 1.

In the above equation, V0

[
{Ct}t≥1

]
and V0

[{
Cstabt

}
t≥1

]
denote the time-0 prices

of claims to the future consumption stream and the future stabilized consumption

stream, respectively. Therefore, the cost of consumption fluctuations measures

how much extra investors would be willing to pay in order to replace the aggregate

consumption stream with its stabilized counterpart.

If stabilized consumption, Cstabt , is defined as the expected value of future con-

sumption, i.e. Cstabt = E0 (Ct), then Equation (2) measures the cost of all con-

sumption fluctuations. In other words, it measures the benefit of eliminating all

consumption uncertainty. If, on the other hand, stabilized consumption, Cstabt , is

defined as the long-term trend consumption, from which fluctuations correspond-

ing to business cycle frequencies (typically defined as lasting for no longer than 8

years) have been removed, then Equation (2) measures the cost of business cycle

fluctuations in consumption.

In the context of an infinite horizon representative agent economy, Alvarez and

Jermann (2004) show that ω0 in Equation (2) measures the marginal cost of con-

sumption fluctuations, defined as the per unit benefit of a marginal reduction

in consumption fluctuations, expressed as a percentage of lifetime consumption.

Under fairly general conditions, the marginal cost provides an upper bound on

the total cost of consumption fluctuations, where the latter is defined as the addi-

tional lifetime consumption, expressed as a percentage of consumption, that the

representative agent would demand in order to be indifferent between the risky

consumption stream and the stabilized version of it.

Alvarez and Jermann (2004) show that the marginal cost of all consumption

fluctuations, i.e. the scenario where Cstabt = E0 (Ct) = (1 + µc)
tC0 for t =

1, 2, ...,∞, where µc denotes the unconditional mean of consumption growth, is



THE MARKET COST OF BUSINESS CYCLE FLUCTUATIONS 10

given by:

(3) ω0 =
r0 − µc
y0 − µc

− 1.

In the above equation, y0 and r0 denote the yields to maturity on claims to the

stabilized sure consumption stream and the risky consumption stream, respec-

tively. Calibrating µc = 2.3%, y0 = 3.0% and r0 − y0 ≥ 0.2%, they obtain a

very high estimate of the cost of at least 28.6%. However, the above equation

highlights that the estimate of the cost is very sensitive to the values of y0, r0, and

µc. In fact, in Alvarez and Jermann (2004), the estimate of the cost varies in the

range 28.0%–1535.7% based on different calibrations of the parameters. Specifi-

cally, as y0 → µc, we have ω0 → ∞, and the approach breaks down. Olivier J.

Blanchard (2019) points out that, at the current time, the nominal rate on a 10-

year government bond is 2.7%, while the expected nominal growth rate is 4.0%,

causing y0−µc to be negative, thereby negating the use of Equation (3). And this

is not just a feature of the US, but also other developed economies such as the

UK and the Euro Zone. Moreover, Blanchard (2019) highlights that the current

situation is more the norm rather than the exception in the US – the average

nominal growth rate and the rate on 1-year government bonds have been 6.3%

and 4.7%, respectively, since 1950, and 5.3% and 4.6%, respectively, since 1870,

and, in fact, y0 − µc has been negative in all decades except the 1980s. This

reveals the fragility of the results obtained using Equation (3).

Therefore, in this paper, instead of attempting to measure the welfare costs

of eliminating consumption fluctuations over an infinite time horizon, we focus

on the term structure of finite horizon consumption risk. In other words, we

characterize the welfare gains from stabilizing the next j = 1, ..., J periods of

consumption uncertainty. This makes our results more robust to the choice of

discount rates. In addition, the results are also informative about the persistence

of underlying shocks. A further advantage of considering the welfare costs of

finite horizon fluctuations is that stabilization of fluctuations can affect the long

run mean growth rate in unknown ways (e.g. Gadi Barlevy (2004) considers
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an endogenous growth framework in which shutting down aggregate uncertainty

increases annual consumption growth by .35-.40%), so the present endowment-

economy exercise that abstracts from this effect may have limited interpretability

for long-horizon calculations.

To obtain the term structure, note that the law of one price implies that

(4) V0

[
{Ct}jt=1

]
=

j∑
t=1

V0 (Ct) ,

for j ≥ 1, where V0 (Ct) denotes the time-0 price of a claim to a single payoff equal

to the aggregate consumption at time t. Similarly, V0

[{
Cstabt

}j
t=1

]
can be written

as the sum, over time periods 1, 2, ..., j, of the prices of claims to single payoffs

equal to the stabilized consumption in each of these future periods. Therefore,

the (cumulative) cost of j-period fluctuations is given by

(5)

∑j
t=1 V0

(
Cstabt

)∑j
t=1 V0 (Ct)

− 1.

Note that, as j →∞, the cost of j-period consumption fluctuations in Equation

(5) approaches the marginal cost of consumption fluctuations in Equation (2)

studied by Alvarez and Jermann (2004).

We provide two types of estimates of the costs of fluctuations. First, we present

the expected cost of consumption fluctuations, i.e. the average cost over all pos-

sible states of the world. This is the ratio of the expected (or, average) prices of

claims to a stabilized consumption stream and the actual aggregate consumption

stream. For instance, the expected cost of one-period consumption fluctuations

is defined as:

(6)
EP [Vt (Cstabt+1

)]
EP [Vt (Ct+1)]

− 1,

where EP [.] refers to the expectation with respect to the (true) underlying physical

measure P.

Second, we report how the cost varies over time, i.e. with different possible
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states of the world. Specifically, the time-t cost of one-period consumption fluc-

tuations is defined as

(7)
Vt
(
Cstabt+1

)
Vt (Ct+1)

− 1,

Note that the difference between the average cost in Equation (6) and the time-t

cost in Equation (7) is that, while the former involves the evaluation of uncon-

ditional expectations to obtain the average prices of the consumption claims,

the latter requires the computation of the time-t prices of these claims as the

conditional expectations of their discounted payoffs.

Note that since neither of the two assets that characterize the marginal cost of

consumption fluctuations – namely, the claims to aggregate consumption or its

stabilized counterpart – is directly traded in financial markets, their prices are

not directly observed. Therefore, the values of these claims need to be estimated

in order to obtain the cost of consumption fluctuations. Historically, this has

involved taking a stance on investors’ preferences, i.e. their stochastic discounting

of the various possible future states of the world, and the dynamics of the data

generating process, i.e. the likelihood of the states being realized. The resultant

estimates of the cost of economic fluctuations have proven to be quite sensitive

to these two assumptions (see, e.g., Barlevy (2005)). The following subsection

outlines a novel econometric methodology for estimating the cost of consumption

fluctuations, that does not require any specific functional-form assumptions either

about investors’ preferences or the dynamics of the data generating process.

B. Measuring the Cost of Aggregate Fluctuations

The (shadow) value of a claim to the aggregate consumption next period can

be generally expressed as

(8) Vt (Ct+1) = EP [Mt+1Ct+1|Ft
]
,
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where Mt is the SDF, Ft = {Ft,Ft−1, . . .} denotes the investors’ information set

at time t, and EP [.|Ft] refers to the expectation with respect to the physical

measure P conditional on the investors’ time-t information set. The existence

of a (strictly positive) SDF is guaranteed by the assumption of the absence of

arbitrage opportunities.

Dividing Equation (8) by Ct to make both sides stationary, we have

(9) p̃c1,t :=
Vt (Ct+1)

Ct
:= EP

[
Mt+1

Ct+1

Ct
|Ft
]
.

p̃c1,t can be interpreted as the time-t price (expressed as a fraction of current

consumption) of an asset with a single payoff equal to the aggregate consumption

next period.

Similarly, the (shadow) value of a claim to a stabilized version of the aggregate

consumption next period can be expressed as

(10) Vt

(
Cstabt+1

)
= EP

[
Mt+1C

stab
t+1 |Ft

]
.

implying that

(11) p̃cstab1,t :=
Vt
(
Cstabt+1

)
Ct

:= EP

[
Mt+1

Cstabt+1

Ct
|Ft

]
.

If the true underlying model were known, i.e. the SDF M and the physical

measure P were known, then the prices of the claims to the aggregate consumption

and the stabilized aggregate consumption next period could be determined using

Equations (9) and (11), respectively. Therefore, the time-t cost of one-period

consumption fluctuations, defined in Equation (7) could be obtained as

(12)
Vt
(
Cstabt+1

)
Vt (Ct+1)

− 1 =
p̃cstab1,t

p̃c1,t

− 1.

And, the average (over all possible states of the world) cost of one-period fluctu-
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ations, defined in Equation (6), would then obtain as

(13)
EP [Vt (Cstabt+1

)]
EP [Vt (Ct+1)]

− 1 ≈
EP (p̃cstab1,t

)
EP
(
p̃c1,t

) − 1 ≡ p̃cstab1

p̃c1

− 1.

The costs of multi-period fluctuations can be similarly obtained.

For instance, assuming a representative agent endowed with power utility pref-

erences with a constant CRRA, p̃c1 can be estimated as 1
T

∑T
t=1 δ (∆Ct)

1−γ ,

where γ denotes the CRRA and δ the subjective discount factor. Moreover, as-

suming log-normality of the aggregate consumption growth as in Lucas (1987):

p̃c1 = EP [δ(∆Ct)1−γ] = eln(δ)+(1−γ)EP[ln(∆Ct)]+.5(1−γ)2V arP[ln(∆Ct)].

The price of a claim to sure consumption next period, Cstabt+1 = (1 + µc)Ct, is,

similarly, given by

p̃cstab1 = EP [δ(∆Ct)−γ (1 + µc)
]

= (1 + µc) e
ln(δ)−γEP[ln(∆Ct)]+.5γ2V arP[ln(∆Ct)].

Using calibrated (or estimated) values of the first two moments of log consumption

growth and the preference parameters, we can obtain p̃c1 and p̃cstab1 and, therefore,

the price of one-period consumption fluctuations.

However, in practice, neither the pricing kernel M nor the physical measure P

is directly observable and, therefore, need to be estimated. In this paper, we do

not make any strong assumptions either about the functional-form of preferences,

or the dynamics of the data generating process. Instead, our methodology is

based on the observation that, albeit not directly observable, information about

M is available in financial markets. Specifically, we assume that the pricing ker-

nel, M , has the form in Equation (1). As discussed in the introduction, this

multiplicative decomposition of the SDF encompasses virtually all representative

agent consumption-based asset pricing models proposed in the literature, includ-

ing Lucas’ original specification, and even certain heterogeneous agents incom-

plete markets models. Different models offer different economic interpretations of

the ψ-component.
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Average Cost of Fluctuations

Given the assumed form of the SDF, for any vector of excess returns Re
t ∈ RN

on N traded assets, the following set of unconditional Euler equations must hold

in the absence of arbitrage opportunities:

0 = EP [MtR
e
t ] =

∫
z

(∆C(z))−γ ψ(z)Re(z)dP(z) =

∫
z

(∆C(z))−γ Re(z)dF(z),

where 0 is an N -dimensional vector of zeros and z denotes the (latent) state

vector. The third equality follows from a change of measure from P to F, with an

associated Radon-Nikodym derivative of dF(z)
dP(z) = ψ(z)

EP(ψ(z))
.

Using asset returns and consumption data, we can estimate the F distribution.

Suppose that p(z) and f(z) denotes the pdfs associated with the measures P and

F, respectively. The F distribution can be estimated to minimize the Kullback-

Leibler Information Criterion (KLIC) divergence (or the relative entropy) between

the P and F measures:

(14)

min
F

∫
log

(
dP
dF

)
dP ≡

∫
z

log

(
p(z)

f(z)

)
p(z)dz, s.t. 0 =

∫
z
Re(z) (∆C(z))−γ f(z)dz.

Since relative entropy is not symmetric, we can reverse the roles of P and

F in Equation (14) to obtain an alternative divergence criterion between these

two measures, which can be minimized to recover an alternative estimate of the

measure, F:

(15)

min
F

∫
log

(
dF
dP

)
dF =

∫
log

(
f(z)

p(z)

)
f(z)dz s.t. 0 =

∫
Re(z) (∆C(z))−γ f(z)dz,

Equations (14) and (15) are, respectively, the Empirical Likelihood (EL) esti-

mator of Owen (2001) and the Exponentially-Tilted (ET) estimator of Kitamura

and Stutzer (1997) (see also Susanne M. Schennach (2005)), originally proposed

in Ghosh, Julliard and Taylor (2017) to recover the multiplicative missing com-

ponent of the pricing kernel. Once the F-measure, or, from the expression for the

Radon-Nikodym derivative, the missing component, ψ, of the pricing kernel, is
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estimated, the pricing kernel, M , can be obtained using Equation (1). We refer

to this kernel as the Information-SDF, or I-SDF, because of the information-

theoretic approach used to recover it.

Ghosh, Julliard and Taylor (2017) point out several reasons why relative entropy

minimization is an attractive criterion for recovering the pricing kernel. Some of

these are restated here for convenience.

First, the use of relative entropy, due to the presence of the logarithm in the ob-

jective function in Equations (14) and (15), naturally imposes the non-negativity

of the pricing kernel.

Second, our approach to recover the ψt component satisfies the Occam’s razor,

or law of parsimony, since it adds the minimum amount of information needed

for the pricing kernel to price assets. To provide some intuition, suppose that the

consumption growth component of the pricing kernel, (∆Ct)
−γ , were sufficient to

price assets perfectly. Then ψt ≡ 1, ∀t, and we have that F ≡ P, delivering a KLIC

divergence
∫

log
(
dP
dF
)
dP = 0 in Equation (14) (the same holds for Equation (15)).

However, if the consumption growth component is not sufficient to price assets

(as is the case in reality), then the estimated measure F is distorted relative to

the physical measure P, i.e. the KLIC divergence is positive. And, the estimator

searches for a measure F that is as close as possible, in an information-theoretic

sense, to the physical measure P. In other words, the approach distorts the

physical probabilities as little as possible in order to satisfy the Euler equation

restrictions. And the estimator is non-parametric in the sense that it does not

require any parametric functional-form assumptions about the ψ-component of

the kernel or the physical distribution P.

Third, as implied by the work of Donald E. Brown and Robert L. Smith (1990),

the use of entropy is desirable if we think that tail events are an important com-

ponent of the risk measure.4

Fourth, this approach is numerically simple to implement. Given a history of

excess returns and consumption growth {ret ,∆ct}
T
t=1, Equation (14) can be made

4Brown and Smith (1990) develop what they call “a Weak Law of Large Numbers for rare events;”
that is, they show that the empirical distribution observed in a very large sample converges to the
distribution that minimizes the relative entropy.
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operational by replacing the expectation with a sample analogue, as is customary

for moment based estimators, and using the Radon-Nikodym derivative to rewrite

the criterion function in terms of the ψ-component of the SDF:5

(16) arg max
{ψt}Tt=1

1

T

T∑
t=1

logψt s.t.
1

T

T∑
t=1

(∆ct)
−γ ψtr

e
t = 0.

An application of Fenchel’s duality theorem to the above problem (see, e.g., Imre

Csiszár (1975), Owen (2001)), delivers the estimates (up to a positive constant

scale factor):

(17) ψ̂t =
1

T (1 + θ̂(γ)′ret (∆ct)
−γ)

∀t,

where θ̂ ∈ RN is the vector of Lagrange multipliers that solves the unconstrained

dual problem:

(18) θ̂(γ) = arg min
θ

−
T∑
t=1

log(1 + θ′ret (∆ct)
−γ).

The solution to Equation (15) is similarly simple to implement and is presented

in Appendix A.A1.

Fifth, and perhaps most importantly, the I-SDF successfully prices assets. Note

that this result is not surprising in sample, because the I-SDF is constructed to

price the test assets in-sample (see Equation (14)). However, Ghosh, Julliard and

Taylor (2022) show that the good pricing performance of the I-SDF also obtains

out-of-sample for broad cross-sections of assets, including domestic and interna-

tional equities, currencies, and commodities. The out-of-sample performance of

the I-SDF is superior to not only the single factor CAPM and the Consumption-

CAPM, but also the more recent Fama-French 3 and 5 factor models. Appendix

A.A5 reproduces a table from Ghosh, Julliard and Taylor (2022) on the out-of-

sample performance of the I-SDF vis a vis other popular factor models. This

suggests that the I-SDF is more successful at capturing the relevant sources of

5This amounts to assuming ergodicity for both the pricing kernel and asset returns.
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priced risk and, therefore, offers a more reliable candidate kernel with which to

measure the cost of aggregate economic fluctuations.

Finally, we show via simulations in Appendix A.A2 that the methodology is

quite successful in estimating the cost of fluctuations in hypothetical economies

for empirically realistic sample sizes.

With the recovered ψ-component, the I-SDF is obtained (up to a positive scale

factor, κ) as

(19)
{
M̂t

}T
t=1

=
{
κ (∆ct)

−γ ψ̂t

}T
t=1

.

The proportionality constant, κ, can be recovered from the Euler equation for the

risk free rate. Specifically, κ =
1
T

∑T
t=1 rf,t

1
T

∑T
t=1(∆ct)

−γ ψ̂t
, where {rf,t}Tt=1 are the realized

returns on the risk free asset in the historical sample. This ensures that, although

the I-SDF is recovered using excess returns, it also satisfies the Euler equation

for the risk free rate.

Armed with the I-SDF, we can now estimate the welfare benefits of eliminating

consumption fluctuations. Specifically, the value of eliminating all consumption

fluctuations in the next period alone is obtained as:

(20) ̂˜pc1
stab/ ˜pc1 − 1 =

∑T
t=1 M̂t (1 + µc)∑T

t=1 M̂t∆ct
− 1.

The value of eliminating business cycle fluctuations in the next period is:

(21) ̂˜pc1
stab/ ˜pc1 − 1 =

∑T
t=1 M̂t∆c

stab
t∑T

t=1 M̂t∆ct
− 1,

where ∆cstabt denotes a time-varying stabilized consumption growth from which

the business cycle variations have been removed. This stabilized version of con-

sumption can be obtained by an application of a smoothing filter to the original

consumption series.

We will soon see that estimates obtained by using the I-SDF differ markedly

from estimates obtained by Lucas’ method (summarized on p.14 herein). To help



THE MARKET COST OF BUSINESS CYCLE FLUCTUATIONS 19

explain this, recall that Lucas’ method presumes a complete markets exchange

economy in which the (unique) SDF Mt is the marginal rate of substitution (MRS)

from the discounted power utility functional. The MRS depends only on consump-

tion growth and model parameters. Under the complete markets assumption, all

assets must satisfy the pricing condition E[MtR
e
t ] = 0, including the risk free

asset. Yet the Equity Premium Puzzle and the variance and entropy bounds lit-

eratures cited herein all establish that the excess returns of popular equity indices

will not satisfy these constraints when the Lucas SDF is specified with economi-

cally plausible parameters. In light of this, subsequent work has proposed other

consumption-based asset pricing models, but Ghosh, Julliard and Taylor (2017)

show that these are similarly problematic when the returns of broad cross-sections

of equity factor portfolios are included in Re.

In contrast, the I-SDF satisfies these pricing constraints by construction while

still including consumption growth in its makeup. This provides a method of

pricing consumption fluctuations in a way that is consistent with the pricing of

equity portfolios, albeit without the theoretical desideratum of first specifying

an exchange or other economic model from which it was derived. Theorists who

maintain the complete markets assumption can view our approach as a data-

driven procedure to estimate the unknown unique SDF, with the aforementioned

desirable properties.

Finally, note that Equations (20) and (21) represent the costs of all consumption

fluctuations and business cycle fluctuations, respectively, for one period alone. It

is straightforward to extend the analysis to obtain the cost of fluctuations for

multiple periods. For instance, the (shadow) value of a claim to the aggregate

consumption j periods into the future can be expressed as

Vt (Ct+j) = EP
t [Mt:t+jCt+j ] ,

where Mt:t+j denotes the j-period SDF. Thus, the expected price-consumption

ratio of a security that delivers a single payoff equal to the aggregate consumption
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j periods into the future is given by

p̃cj := EP
[
Vt (Ct+j)

Ct

]
= EP

[
Mt:t+j

Ct+j
Ct

]
.

The one-period I-SDF, recovered in Equation (19), can be compounded to recover

the j-period discount factor:

Mt:t+j =

j∏
i=1

Mt+i.

Using Mt:t+j , we can estimate the price-consumption ratio p̃cj for a single con-

sumption claim j periods in the future. And this can be done for any j = 2, 3, 4, ....

Using the estimated price-consumption ratios of the claims to single future pay-

offs, we can estimate the price-consumption ratio of an asset that delivers the

stochastic consumption in each of the next J periods i.e. p̃c1:J :=
∑J

j=1 p̃cj .

Hence, it is straightforward to compute the value of removing all, or only busi-

ness cycle, fluctuations in consumption over J periods with expressions analogous

to the ones in Equations (20)-(21).

Time-Varying Cost of Fluctuations

Here we describe an extension of the EL approach, namely the smoothed em-

pirical likelihood (SEL) estimator of Kitamura, Tripathi and Ahn (2004), that we

use to recover the time-varying cost of fluctuations. The corresponding extension

of the ET approach – the smoothed exponential tilting (SET) estimator – can be

similarly used (see, e.g., Ghosh, Otsu and Roussellet (2020)). To our knowledge,

this is the first attempt to provide quantitative estimates of the time-variation

in the welfare costs of aggregate fluctuations, without fully specified preferences

and data generating process.

Recall that the EL and ET approaches recover a pricing kernel (the I-SDF)

that prices assets unconditionally, i.e. satisfies the unconditional Euler equations

producing zero unconditional pricing errors. The extension of the methodology

considered in this section recovers an I-SDF that satisfies the more stringent



THE MARKET COST OF BUSINESS CYCLE FLUCTUATIONS 21

conditional Euler equation restrictions, thereby producing zero conditional pricing

errors. The recovered SDF, therefore, must also price assets unconditionally. As

described below, the SEL and SET estimators rely on the same principles as

the EL and ET estimators, respectively, but incorporate additional constraints

through conditional moment restrictions.

We illustrate the methodology using the SEL estimator. The absence of arbi-

trage opportunities implies the following conditional pricing restrictions:

(22) EPt [Mt+1R
e
t+1|Ft

]
= EPt [(∆Ct+1)−γ ψt+1R

e
t+1|Ft

]
= 0,

where the first equality follows from the assumed multiplicative decomposition of

the SDF. Under weak regularity conditions, we have

(23) EPt
[
(∆Ct+1)−γ

ψt+1

EPt(ψt+1|Ft)
Re
t+1|Ft

]
= EFt [(∆Ct+1)−γ Re

t+1|Ft
]

= 0,

where dFt
dPt = ψt+1

EPt (ψt+1|Ft)
is the Radon-Nikodym derivative of F with respect to P.

We assume that the time-t information set of the investors, Ft, can be sum-

marized by a finite state vector, that we denote by Xt ∈ Rm. Suppose that the

historical realizations of consumption growth, excess returns, and the condition-

ing variables are given by (∆ct, r
e
t , xt)

T
t=1, and that these realizations characterize

the possible states of the world. Let fi,j denote the conditional probability (under

the measure F) of observing the joint outcome (∆cj , r
e
j , xj) at time t+ 1, i.e. the

probability of state j being realized at time t+ 1, given that state i was realized

at time t.

The SEL estimator of the transition matrix {fi,j ; i, j = 1, . . . , T} is such that it

belongs to the simplex:

∆ := ∪Ti=1∆i = ∪Ti=1

(fi,1, ..., fi,T ) :

T∑
j=1

fi,j = 1, fi,j ≥ 0
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and that: ∀i ∈ {1, . . . , T}, ∀γ ∈ Γ,

(24)
{
f̂SELi,· (γ)

}
= arg min

(fi,·)∈∆i

T∑
j=1

log

(
ωi,j
fi,j

)
ωi,j s.t.

T∑
j=1

fi,j × (∆cj)
−γ rej = 0.

where fi,· denotes the T -dimensional vector (fi,1, ..., fi,T ), Γ is the set of all ad-

missible parameters γ, and ωi,j are nonparametric kernel density weights:

(25) ωi,j =

K
(
xi − xj
bT

)
T∑
t=1

K
(
xi − xt
bT

) ,

where K is a kernel function belonging to the class of second order product ker-

nels,6 and the bandwidth bT is a smoothing parameter.7

The objective function in Equation (24) is the KLIC divergence between the

measure Ft ≡ {ft,j}Tj=1 that is consistent with asset prices, i.e. satisfies the condi-

tional Euler equations for the test assets, and the physical measure proxied by the

nonparametric kernel density weights, Pt ≡ {ωt,j}Tj=1. And,
ft,j
ωt,j

=
ψt,j

EPt (ψt,j |Ft)
is

the Radon-Nikodym derivative of F with respect to P. Suppose that the consump-

tion growth component of the pricing kernel, (∆C)−γ , is sufficient to price assets

perfectly. Then, we have that ∀t = 1, 2, ..., T , the second component of the pricing

kernel ψt,j ≡ 1,∀j = 1, 2, ..., T , implying that ft,j = ωt,j , ∀j = 1, 2, ..., T , the latter

being the physical measure. However, if the consumption growth component is

not sufficient to price assets, the estimated measure Ft is distorted relative to the

physical measure Pt. And, the SEL estimator searches for a measure Ft that is as

close as possible to the physical measure Pt. In other words, the approach distorts

the physical probabilities as little as possible in order to satisfy the conditional

Euler equation restrictions.

The solution to Equation (24) is analytical and given by:

6K should satisfy the following. For X = (X(1), X(2), ..., X(m)), let K =
∏m
i=1 k(X(i)). Here k : R→

R+ is a continuously differentiable p.d.f. with support [−1, 1]. k is symmetric about the origin, and for
some a ∈ (0, 1) is bounded away from zero on [−a, a].

7In theory, bT is a null sequence of positive numbers such that TbT →∞.
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∀i, j ∈ {1, . . . , T},

(26) f̂SELi,j (γ) =
ωi,j

1 + (∆cj)
−γ θ̂i(γ)′ rej

,

where θ̂i(γ) ∈ RN : i = {1, . . . , T} are the Lagrange multipliers associated with

the conditional Euler equation constraints, and solve the following unconstrained

problem:

(27) θ̂i(γ) = arg max
θi∈RN

T∑
j=1

ωi,j log
[
1 + (∆cj)

−γ θ′i r
e
j

]
.

Equations (26) and (27) show that the SEL procedure delivers a (T ×T ) matrix

of probabilities
{
f̂SELi,j (γ)

}
for each value of the parameter γ. Each row i : i =

{1, 2, ..., T} contains the probabilities of transitioning to each of the T possible

states j : {j = 1, 2, ..., T} in the subsequent period, conditional on state i having

been realized in the current period. Therefore, the approach recovers the entire

conditional distribution of the data, under the measure F, that is consistent with

observed asset prices, i.e. that satisfies the conditional Euler equations.

Using the SEL-estimated conditional distribution, the cost of all one-period

consumption fluctuations at each date (or state) t can be calculated as:

(28)
Vt(Cstabt+1 )

Ct
Vt(Ct+1)

Ct

−1 =
EFt

[
(∆Ct+1)−γ (1 + µc) |Ft

]
EFt

[
(∆Ct+1)−γ (∆Ct+1) |Ft

]−1 =
(1 + µc)

∑T
j=1 f̂

SEL
t,j × (∆cj)

−γ∑T
j=1 f̂

SEL
t,j × (∆cj)

1−γ −1.

Finally, note that the question naturally arises as to the economic interpretation

of the recovered ψ-component of the kernel. For instance, it could capture a

misspecification of investors’ risk preferences relative to the power utility SDF.

Alternatively, the ψ-component could capture investors’ subjective beliefs about

future macroeconomic and financial outcomes. While our approach does not

need to take a stance on the identity of this component, Ghosh and Roussellet

(2019) present evidence in favour of the latter interpretation. Specifically, they

show that the recovered component is quite similar across a range of preference
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specifications. Moreover, consistent with the interpretation of ψ as capturing

investors’ beliefs, they show that the recovered beliefs about consumption growth

have strong forecasting power for consumption growth, the beliefs about the stock

market co-move positively with both Robert Shiller’s survey data on institutional

investors’ confidence in the stock market as well as the Livingston Survey, and the

beliefs about inflation are strongly correlated with inflation forecasts contained

in the Survey of Professional Forecasters.

Properties of the Estimators

The asymptotic properties of the EL/ET and SEL/SET estimators of a finite-

dimensional parameter vector (the SDF parameter γ in our setting) have been

studied in the case of a correctly specified model – see, e.g., J. Qin and J. Lawless

(1994) and Kitamura and Stutzer (1997) for the EL and ET estimators, respec-

tively, and Kitamura, Tripathi and Ahn (2004) for the SEL estimator. In this

context, a correctly specified model refers to the setting in which the ψ-component

of the SDF in Equation (1) is degenerate, i.e. ψ ≡ 1, and, therefore, the physical

measure P equals the distorted measure F needed for the SDF to price assets.

Our framework differs from the above literature in two important respects.

First, our starting premise is that the standard power utility model is insufficient

to price assets, as evidenced by a large existing literature, and, therefore, this

model-implied SDF needs to be augmented by an additional ψ-component, i.e.

P 6= F. In other words, model misspecification emerges naturally in our set-up and

this alters the properties of the above estimators. Second, instead of estimates

of the SDF parameter γ, we are more interested in the missing ψ-component of

the SDF. This involves an important extension of the econometric results in the

above papers.

Ghosh, Otsu and Roussellet (2020) show that, in this set up, under mild reg-

ularity conditions, the estimated ψ-distribution converges in probability to its

pseudo true value – the distribution that is minimally distorted with respect to

the physical measure P, within the class of models parametrized by a known SDF
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(the power utility kernel in our setup). More formally, under suitable regular-

ity conditions, such as the ones in Yuichi Kitamura (2003) and Ivana Komunjer

and Giuseppe Ragusa (2016), the probability limit of the estimated distribution

function can be interpreted as the information projection by the relative entropy

divergence from the data generating distribution function P to the set of distri-

bution functions satisfying the moment restrictions given by the Euler equations

(see the constraints in Equations (14) and (15)). While our approach is nonpara-

metric, not relying on a fully specified SDF, the above property of the estimator

parallels that of parametric maximum likelihood estimators for misspecified mod-

els (see, e.g., H. White (1982), Quang H. Vuong (1989)).

In the absence of knowledge of the true SDF, this methodology offers a more

robust approach to measuring the cost of fluctuations. At the least, it offers a

valuable alternative relative to fully structural approaches, having well-behaved

asymptotics and, as we show in the following section, finite-sample behaviour.

Moreover, simulation evidence, presented in Appendix A.A2, suggests that this

approach accurately recovers the cost of aggregate fluctuations for empirically

realistic sample sizes. Specifically, the results suggest that the latter conclusion

holds in both correctly specified settings where the econometrician has knowledge

of the true SDF as well as in misspecified settings where, in the absence of knowl-

edge of the true SDF, the econometrician erroneously uses the power utility SDF

when recovering the ψ-component of the kernel and using it to measure the cost

of fluctuations.

III. The Market Value of Aggregate Uncertainty

In this section, we use the I-SDF, extracted using the information-theoretic

procedure outlined in Section II, to obtain the cost of aggregate consumption

fluctuations.

Before presenting the empirical results, we turn to a discussion of the SDF

parameter γ that enters the welfare cost calculations (see, e.g., Equations (20)–

(21) for the expected cost and Equation (28) for the time-variation in the cost).

As highlighted in Section II, virtually all representative agent consumption-based
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models proposed in the literature imply the multiplicative form for the SDF as-

sumed in this paper, Mt =
(

Ct
Ct−1

)−γ
ψt. Different models use different calibra-

tions for the utility curvature parameter γ.

For example, in the time and state separable power utility model, γ is the

CRRA of the representative agent and an upper bound of 10 is generally con-

sidered plausible for it. However, much higher levels of risk aversion are needed

for the model to explain several observed features of financial market data. In

models with Larry G. Epstein and Stanley E. Zin (1989) recursive preferences,

Mt = δη
(

Ct
Ct−1

)− η
ρ
Rη−1
c,t = δη

(
Ct
Ct−1

)−γ ( Pc,t
Ct

+1

Pc,t−1
Ct−1

)η−1

, where ρ is the elasticity of

intertemporal substitution and η = 1−γ
1− 1

ρ

(the second equality follows from factor-

izing out consumption growth from the return on total wealth). These models

typically calibrate γ = 10 (see, e.g., Bansal and Yaron (2004)). Some models with

recursive preferences calibrate γ to much larger values (e.g., Monika Piazzesi and

Martin Schneider (2007)). In models with external habit formation (see, e.g.,

Campbell and Cochrane (1999)), Mt = δ
(

Ct
Ct−1

)−γ (
St
St−1

)−γ
, where St is the

surplus consumption ratio and γ the utility curvature parameter that determines

the time-varying risk aversion γ
St

. Campbell and Cochrane (1999) calibrate γ = 2.

However, Ghosh, Julliard and Taylor (2017) show that the model needs a higher

γ (typically in excess of 7) to satisfy entropy bounds for admissible SDFs, that

are tighter than the seminal variance bounds of Lars Peter Hansen and Ravi Ja-

gannathan (1991). In models with complementarities in consumption, (see e.g.,

Piazzesi, Schneider and Tuzel (2007)), Mt = δ
(

Ct
Ct−1

)−γ (
At
At−1

) γζ−1
ζ−1

, where At

is the expenditure share on non-housing consumption, γ−1 is the intertemporal

elasticity of substitution, and ζ is the intratemporal elasticity of substitution be-

tween housing services and non-housing consumption. The authors’ consider two

alternative calibrations of γ = 5 and γ = 16. However, Ghosh, Julliard and

Taylor (2017) show that the model needs a higher γ (typically in excess of 20)

to satisfy entropy bounds for admissible SDFs. In models with rare disasters,

γ is typically calibrated to values between 3 and 4 (see, e.g., Robert J. Barro

(2006), Jessica Wachter (2013)). However, Julliard and Ghosh (2012) show that
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these models need much higher levels of risk aversion, typically in excess of 20, to

explain the equity premium puzzle. To summarize, most models in the literature

either calibrate the SDF parameter γ to 10 or higher values and/or require such

high values of the parameter to explain asset prices.

Also, in addition to recovering the ψ-component of the SDF, our information-

theoretic procedure offers a way to estimate γ. For instance, the EL estimator of

γ is defined as (see Kitamura (2006)):

(29)

γ̂EL = min
γ

min
F

∫
log

(
dP
dF

)
dP ≡

∫
z

log

(
p(z)

f(z)

)
p(z)dz, s.t. 0 =

∫
z
Re(z) (∆C(z))−γ f(z)dz.

In other words, the EL approach searches for a value of γ in the admissible param-

eter space that minimizes the KLIC divergence between the F and P measures,

subject to the Euler equation constraints. The ET estimator of γ is similarly

defined, albeit swapping the roles of P and F.

We estimate γ in our baseline 1929–2015 sample, using total consumption ex-

penditures as the measure of aggregate consumption and the excess returns on the

market as the sole test asset (see Appendix A.A3 for a description of the data).

Figure 1 plots the EL objective function in Equation (29) as a function of γ. The

point estimate of γ is 22.1 (red dotted line). A similar point estimate of 26.2 is

obtained when nondurables and services consumption is used as the measure of

aggregate consumption expenditures. Identical point estimates are obtained with

the ET approach.

Motivated by the observations that most theoretical models calibrate γ to 10

or higher values and that the point estimate obtained in the historical sample

is much higher, we set γ = 10 in our baseline results as a conservative bench-

mark. Note that higher values of γ serve to further increase the marginal utility

of the representative agent in bad states with low realizations of the consumption

growth rate and, therefore, would further increase the estimates of the cost of con-

sumption fluctuations. We also assess the sensitivity of our results to alternative

choices of γ.
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Figure 1. Profile Likelihood
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Note: The figure plots the EL objective function as a function of the SDF parameter γ. The dotted

vertical line denotes the point estimate of γ. Consumption denotes the real personal total consumption

expenditure (includes durables, nondurables, and services). The excess return on the market portfolio is

the sole test asset. The sample is annual, covering the period 1929-2015.

We next proceed to estimate the cost of fluctuations. Section III.A presents

the term structure of the expected (or, average) cost of consumption fluctuations.

Section III.B reports the nature of time-variation in the cost. Finally, in Appendix

A.A4, we present a host of robustness checks, including alternative definitions of

relative entropy and an alternative longer sample period going back as far as 1890.

A. The Average Cost of Consumption Uncertainty

Recall that, rather than estimating the cost of aggregate consumption fluctu-

ations over an infinite time horizon, we focus on the term structure of the cost

for finite time periods. Specifically, we estimate the (cumulative) cost for one- to

ten-year time horizons.

Equation (13) defines the expected cost of one-period fluctuations. The cost is

the ratio of the prices of two hypothetical securities: a claim to a stabilized con-

sumption in the next period, p̃cstab1 , and a claim to the actual consumption next
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period, p̃c1. When measuring the cost of all fluctuations, stabilized consump-

tion refers to a consumption path from which all fluctuations have been removed,

i.e. consumption growth in each period is replaced with its unconditional mean.

When measuring the cost of business cycle fluctuations, on the other hand, sta-

bilized consumption refers to the residual after the business cycle component has

been removed from the aggregate consumption series. We compute the stabilized

consumption series using the widely used Hodrick-Prescott filter. Since our em-

pirical analysis uses annual data, we use a smoothing parameter of 6.25 in the

application of the Hodrick-Prescott filter, following the suggestions in Morten O.

Ravn and Harald Uhlig (2002).

Equations (20)–(21) reveal that the prices of these two securities and, therefore,

the cost of one-period consumption fluctuations, depend on the SDF. We use the

I-SDF, recovered using the EL and ET approaches, to measure this cost. The costs

of multi-year fluctuations are obtained by compounding the I-SDF, as explained

in Section II.B. Note that the recovered I-SDF depends on the particular measure

of the aggregate consumption expenditures as well as on the set of assets used

(see Equations (17)-(18)). To ensure robustness, we estimate the I-SDF using

two different measures of consumption expenditures and two alternative sets of

assets. The latter includes (a) the market return and (b) the returns on the 6

Fama-French size and book-to-market equity sorted portfolios. Our choices of test

assets are motivated by two arguments. First, existing empirical evidence shows

that size and book-to-market equity sorted portfolios have significant predictive

power for consumption and GDP growth rates, not only in the United States but

also in ten developed markets (see, e.g., Jimmy Liew and Maria Vassalou (2000),

Parker and Julliard (2005)). They, therefore, constitute appropriate test assets to

infer agents’ preferences toward consumption risk. Second, the equity premium

is, perhaps, the most robust feature of stock market data for over a century. Over

300 risk factors have been proposed in the literature, and many of the associated

risk premia have disappeared or greatly diminished over time including ones that

were once believed to be the most robust (e.g., the size and value premia). This
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makes the market return the most natural choice of test asset.8

The results are presented in Table 1. Panel A presents results when consump-

tion refers to the expenditures on nondurables and services, while Panel B does

the same for total consumption expenditures (including durables). Consider first

Panel A. In Rows 1–2, the market portfolio is the sole test asset and the EL

and ET approaches, respectively, are used in the extraction of the I-SDF. Row

1, Column 2 shows that the estimated cost of all one-period consumption fluc-

tuations is 1.53% using the EL estimator. Row 2, Column 2 shows that the ET

estimator implies a very similar cost at 1.47%. In Rows 3–4, the six size and

book-to-market-equity sorted portfolios of Fama-French are used to recover the

I-SDF, using the EL and ET approaches, respectively. Column 2 of Rows 3–4

show that the estimated cost of all one-period consumption fluctuations remains

quite similar at 1.29% and 1.28%, respectively, with the EL and ET approaches.

Row 5 shows that the one-year cost, estimated using the pricing kernel implied

by power utility preferences with a constant CRRA (hereafter referred to as the

CRRA kernel), is smaller at .93%. And, Row 6 shows that, if the assumption of

lognormal consumption growth is imposed on the CRRA kernel – this corresponds

to Lucas’ original specification – the cost of one-period consumption fluctuations

further reduces to .75%.

Note that the above results pertain to the cost of one-period fluctuations alone.

Columns 3, 4, 5, and 6 of Panel A present the costs of all consumption fluctua-

tions over two, three, four, and five year horizons, respectively. Row 1 (Row 2)

shows that, when the market portfolio alone is used to recover the I-SDF, the

costs of consumption fluctuations over two, three, four, and five years increase

to 5.2%, 11.8%, 14.3%, and 14.4%, respectively (4.5%, 10.3%, 11.9%, and 11.9%,

respectively) using the EL (ET) approach. For the EL approach, the cost of con-

sumption fluctuations over two years is more than three times higher than the

cost of fluctuations over one year alone (5.2% versus 1.5%). Similarly, the cost

8Our focus on the term structure of the cost of fluctuations might make it seem natural to use
dividend strips as test assets. However, data on dividend strips are only available over relatively short
time periods (typically the early 2000s). This feature limits their usage in our setting that relies on
longer time periods so as to have a greater coverage of the different possible states.
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of consumption fluctuations over a three-year period is more than seven times

higher than the cost over one year alone (11.8% versus 1.5%); and the costs over

four- and five-year periods are each almost ten times higher than the cost over one

year (14.3% and 14.4%, respectively, versus 1.5%). Similar results are obtained

with the ET estimator.

Table 1: Cumulative Cost of Consumption Fluctuations

All Fluctuations B. C. Fluctuations

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr

Panel A: Nondurables & Services Consumption

I-SDF (Mkt, EL) 1.53 5.15 11.75 14.28 14.44 .556 1.48 3.39 3.90 3.57

I-SDF (Mkt, ET) 1.47 4.49 10.32 11.94 11.94 .574 1.37 3.04 3.35 3.07

I-SDF (FF6, EL) 1.29 3.52 6.65 10.63 11.20 .462 1.03 2.07 3.03 2.90

I-SDF (FF6, ET) 1.28 3.50 6.17 9.93 10.64 .411 .926 1.87 2.79 2.69

CRRA Kernel .933 2.08 3.73 4.87 5.03 .457 .854 1.32 1.52 1.40

Lucas .751 1.09 1.40 1.68 1.94 - - - - -

Panel B: Total Consumption

I-SDF (Mkt, EL) 2.15 6.77 16.13 19.65 19.73 .896 2.09 4.85 5.55 5.12

I-SDF (Mkt, ET) 2.07 6.13 14.68 17.32 17.31 .904 1.98 4.47 4.98 4.59

I-SDF (FF6, EL) 1.88 4.89 9.46 15.00 15.57 .770 1.60 3.05 4.35 4.14

I-SDF (FF6, ET) 1.83 4.81 8.72 14.09 14.75 .691 1.43 2.73 4.01 3.83

CRRA Kernel 1.42 3.08 5.80 7.63 7.77 .761 1.32 2.08 2.40 2.21

Lucas 1.15 1.68 2.16 2.61 3.03 - - - - -

The table reports the (cumulative) costs of all aggregate consumption fluctuations (Columns 2-6) and the

costs of business cycle fluctuations in consumption (Columns 7-11), over one-to five-year horizons. Panel

A presents results when consumption denotes the real personal consumption expenditure of nondurables

and services, while Panel B does the same for total personal consumption expenditure (that includes

durables). In each panel, the costs are calculated using the I-SDF recovered from the market portfolio

alone (Rows 1–2), the I-SDF recovered from the six size and book-to-market-equity sorted portfolios of

Fama and French (Rows 3–4), the kernel implied by power utility preferences with a constant CRRA

(Row 5), and Lucas’ original specification that involves power utility preferences and i.i.d. lognormal

aggregate consumption growth dynamics (Row 6). The sample is annual covering the period 1929-2015.

Row 5 shows that the CRRA kernel implies much smaller costs of two, three,

four, and five year consumption fluctuations of 2.1%, 3.7%, 4.9%, and 5.0%,

respectively. In fact, the costs are an order of magnitude smaller than the costs

implied by the I-SDF (with the exception of the two-year fluctuations that is
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also less than half of that implied by the I-SDF). Lucas’ kernel in Row 6 implies

even smaller costs of 1.1%, 1.4%, 1.7%, and 1.9% at two-, three-, four-, and five-

year horizons, respectively. Finally, very similar results are obtained when the

6 FF portfolios are used to recover the I-SDF. Rows 3–4 show that the costs of

fluctuations for two-, three-, four-, and five-year periods are substantially higher

for the I-SDF compared to the CRRA kernel – for instance, 3.5% versus 2.1% for

two years, 6.7% versus 3.7% for three years, 10.6% versus 4.9% for four years,

and 11.2% versus 5.0% for five years using the EL estimator (Row 3). And the

costs are even higher when compared to Lucas’ specification.

Figure 2, Panel A plots the term structure of the cost of fluctuations over one-

to ten-year horizons.9 The black solid line corresponds to the costs obtained

with the I-SDF recovered with the market portfolio as the sole test asset. The

black-dashed line, on the other hand, denotes the costs implied by the I-SDF

extracted from the 6 FF portfolios. The green and blue lines denote the costs

estimated with the CRRA kernel and Lucas’ specification, respectively. The figure

highlights the higher costs implied by the I-SDF relative to those obtained with

Lucas’ specification.

Figure 2. Marginal Cost of All Consumption Fluctuations, 1929-2015
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9We present the term structure of the cost of fluctuations from one to ten years in Figure 2 but only
from one to five years in Table 3 to avoid cluttering of numbers in the table.
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Notes: The figure plots the cumulative costs of all aggregate consumption fluctuations over one- to

ten-year horizons, for different choices of the pricing kernel and measures of consumption. Panel A

presents results when consumption refers to the real personal consumption expenditure of nondurables

and services, while Panel B does the same when consumption denotes the total personal consumption

expenditure. The costs are presented for the I-SDF extracted using the excess return on the market

portfolio as the sole test asset (black line) or the excess returns on the 6 FF portfolios as test assets

(black dashed line) with the EL approach, the pricing kernel implied by power utility preferences with

a constant CRRA (green line), and Lucas’ original specification that involves power utility preferences

and i.i.d. lognormal aggregate consumption growth dynamics (blue line).

The last five columns of Table 1, Panel A present our estimates of the cost

of business cycle fluctuations in consumption. Row 1 shows that, using the I-

SDF extracted from the market portfolio alone with the EL approach, the cost

of business cycle fluctuations in consumption over a one-year time horizon is

estimated to be 0.6%. The costs of business cycle fluctuations over two, three,

four, and five year horizons increase to 1.5%, 3.4%, 3.9%, and 3.7%, respectively.

Similar results are obtained in Row 2 with the ET estimator – the costs of business

cycle fluctuations over two, three, four, and five year horizons increase to 1.4%,

3.0%, 3.4%, and 3.1%, respectively. The results also remain similar in Rows 3–

4 when the six size and book-to-market-equity sorted portfolios are used in the

recovery of the I-SDF with the EL and ET approaches, respectively – the costs

of business cycle fluctuations increase from 0.5% at the one-year horizon to 2.9%

for a five-year time period using the EL and from 0.4% to 2.7% using the ET.

Row 5 shows that, for the CRRA kernel, while the cost of business cycle fluc-

tuations over a one-year period is similar to that obtained with the I-SDF (0.5%

versus 0.5%–0.6%), the cost increases little for multi-year horizons in the case of

the former. For instance, the cost of five-year fluctuations is only 1.4% – less than

half of the cost implied by the I-SDF in Rows 1–4.

An important point to note is that while the estimates of the costs of business

cycle fluctuations are smaller than the corresponding costs of all consumption

uncertainty, the former, nonetheless, represents a substantial fraction of the latter.

For instance, Panel A, Row 1 shows that, when the market portfolio is used in
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the extraction of the I-SDF with the EL approach, the cost of business cycle

fluctuations constitutes 36.3% of the cost of all consumption fluctuations over a

one-year horizon. The costs of business cycle fluctuations over two, three, four,

and five years account for 28.7%, 28.9%, 27.3%, and 24.7%, respectively, of the

cost of all consumption fluctuations over these time horizons. Similarly, when

the 6 FF portfolios are used for the recovery of the I-SDF in Row 3, the costs of

business cycle fluctuations over one to five years account for 35.8%, 29.3%, 31.1%,

31.0%, and 25.9%, respectively, of the costs of all consumption fluctuations over

these time horizons. Similar results are obtained in Rows 2 and 4 that use the

ET estimator.

Figure 3, Panel A plots the term structure of the cost of all consumption fluc-

tuations (solid line) and business cycle fluctuations in consumption (dashed line)

over 1-10 years. The black lines present the estimates obtained when the market

portfolio alone is used as the test asset to recover the I-SDF. The red lines, on

the other hand, are based on the estimates obtained when the I-SDF is recov-

ered from the 6 FF portfolios. The fairly large ratio of the cost of business cycle

fluctuations to the cost of all consumption fluctuations, at all time horizons, is

evident from the figure. Moreover, as with the cost of all fluctuations, the cost

of business cycles seems to stabilize with increase in the time horizon, thereby

suggesting well-defined asymptotics of our approach.

The results in Table 1, Panel A were obtained using personal consumption ex-

penditures on nondurables and services as the measure of consumption. Panel B,

that uses the total consumption expenditures (including durables) as the measure

of consumption, produces results similar to those in Panel A. Note that, not sur-

prisingly, the costs of fluctuations are bigger with total consumption compared

to those obtained with nondurables and services consumption (see also Figure 2,

Panel B and Figure 3, Panel B).

Overall, two salient conclusions emerge from the results of this section. First,

that economic agents perceive the cost of aggregate economic uncertainty to be

quite substantial. For instance, our estimates of the cost of all consumption

fluctuations over a five-year horizon vary from 10.6%-19.7%, depending on the
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measure of aggregate consumption expenditure or the set of assets or the precise

definition of relative entropy used to recover the I-SDF. The cost is substantially

higher than that originally obtained by Lucas.

Figure 3. Marginal Cost of All versus Business Cycle Consumption Fluctuations, 1929-2015

●

●

●

● ● ●
● ● ● ●

2 4 6 8 10

0
5

10
15

20

Panel A: Nondurables & Services Cons.

Years

C
um

ul
at

iv
e 

C
os

t (
%

)

●
●

●
● ● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●
●

●
● ● ● ● ● ● ●

All: I−SDF (Mkt)
BC: I−SDF (Mkt)
All: I−SDF (FF6)
BC: I−SDF (FF6)

●

●

●

● ●
●

●
● ● ●

2 4 6 8 10

0
5

10
15

20

Panel B: Total Cons.

Years

C
um

ul
at

iv
e 

C
os

t (
%

)

●

●

●
●

● ● ● ● ● ●

●

●

●

●
●

●
● ● ● ●

●
●

●

● ● ● ● ● ● ●

Notes: The figure plots the term structure of the (cumulative) cost of all aggregate consumption

fluctuations (solid line) and business cycle fluctuations in consumption (dashed line), over 1-10 years,

obtained using the I-SDF. Panel A presents results when consumption refers to the real personal con-

sumption expenditure of nondurables and services, while in Panel B consumption denotes total personal

consumption expenditure. The I-SDF is extracted using the excess return on the market portfolio as the

sole test asset (black lines) and the 6 FF portfolios (red lines) with the EL approach. The sample is

annual covering the period 1929-2015.

Second, we find that the costs of business cycle fluctuations are large and con-

stitute between a quarter to a third of the cost of all consumption fluctuations.

Our results are in contrast to those in Alvarez and Jermann (2004) who argue that

while the cost of all consumption fluctuations is very high, the cost of business

cycle fluctuations in consumption is miniscule, varying from 0.1% to 0.5%. Our

estimates of the cost of business cycle fluctuations over a cumulative five-year pe-

riod are as high as 5.1% – between ten and fifty times higher than the estimates
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in Alvarez and Jermann (2004). Therefore, the question naturally arises as to

what drives this difference.

We show that the discrepancy is driven, at least in part, by the choice of the

smoothing filter used to remove business cycle variation from the historical con-

sumption series.10 We use the widely used Hodrick-Prescott (HP) two-sided filter

to obtain a long run trend consumption series from which fluctuations corre-

sponding to business cycle frequencies (fluctuations lasting less than eight years)

have been removed. Alvarez and Jermann (2004) (AJ), on the other hand, use a

one-sided filter, whereby trend consumption at time-t is expressed as a weighted

average of K(= 20) lags, with the coefficients chosen so as to represent a low-pass

filter that lets pass frequencies that correspond to cycles of eight years and more.

Figure 4 presents a comparison of the HP and AJ filters. The figure plots the his-

torical consumption growth (blue line), the trend consumption growth obtained

using the HP filter (red line), and the trend consumption growth obtained using

the AJ filter (black line). Consumption refers to the total personal consumption

expenditures.

Figure 4. Comparison of HP and AJ Filters
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Notes: The figure plots the historical consumption growth (blue line), the trend consumption growth

obtained using the HP filter (red line), and the trend consumption growth obtained using the AJ filter

10We thank Jaroslav Borovicka for pointing this out.
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(black line). Consumption refers to the total personal consumption expenditures. The sample is annual

over 1929–2015.

The figure shows that the HP filter delivers a smoother trend consumption

growth relative to the AJ filter. In fact, it is known that a one-sided filter of the

AJ type, with coefficients chosen to let pass frequencies that correspond to cycles

of at least a given length, cannot fully eliminate higher frequency fluctuations.

In other words, it also lets pass some fluctuations corresponding to higher fre-

quencies. Consequently, in the context of the present application, the computed

trend contains a non-negligible amount of business cycle variability. In fact, the

trend consumption growth is markedly different between the HP and AJ filters

over our sample period. Specifically, the historical real consumption growth has a

volatility of 3.4%, while the trend consumption growth obtained with the HP and

AJ filters have volatilities of 1.9% and 2.8%, respectively. Thus, the trend growth

obtained with the AJ filter has 46% higher volatility than that obtained with the

HP filter. Therefore, not surprisingly, the cost of business cycles obtained with

the AJ filter are lower than those obtained with the HP filter. As an illustration,

when the I-SDF is recovered from the market portfolio with the EL approach,

the cost of business cycle fluctuations over one- to five-year horizons takes values

0.9%, 2.1%, 4.8%, 5.5%, and 5.1%, respectively, with the HP filter. The corre-

sponding costs obtained using the AJ filter are 0.5%, 1.2%, 2.6%, 2.2%, and 1.5%,

respectively – still higher than the values reported in Alvarez and Jermann (2004)

but smaller than those obtained with the HP filter.

Of course, a two-sided filter like the HP filter also has an undesirable feature,

namely that the current filtered consumption is contaminated by future con-

sumption realizations. In other words, the approach contaminates the current

information set with future information, which may affect the covariance between

consumption growth and the SDF, and, therefore, the pricing of consumption

claims. To provide further evidence on the costs of business cycle fluctuations,

we try a third approach to filtering recently suggested by James D. Hamilton

(2018) to overcome the shortcomings of the two-sided HP filter. This involves

performing a least squares regression of Ct+h on a constant and the p most recent
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values of C as of date t. The fitted values from this regression provide the trend

component of the consumption process, while the residuals identify the transient

component. Since we are interested in removing business cycle fluctuations from

consumption, we follow Hamilton (2018) and set h = 8 quarters and p = 4. The

estimates of the cost of business cycles obtained using the Hamilton filter are even

higher than those obtained using the HP filter – 1.4% versus 0.9% at the one-year

horizon, 3.9% versus 2.1% at the two-year horizon, 7.0% versus 4.8% at the three-

year horizon, 7.9% versus 5.5% at the four-year horizon, and 6.0% versus 5.1%

at the five-year horizon. Separately, in Section III.B, we present further evidence

supporting the high cost of business cycle fluctuations, using an approach that

does not involve a smoothing filter.

Finally, we present evidence that our non-linear adjustment to the pricing kernel

– note that the ψ-component recovered using the EL/ET approaches are highly

nonlinear functions of consumption growth and the test asset returns – has certain

desirable properties relative to alternative linear (or log-linear) adjustments that

have been proposed in the literature and also produce markedly different results

compared to the latter. To demonstrate this, we first consider an SDF that is

log-linear in the aggregate consumption growth rate and the market return (note

that this specification corresponds to the SDF implied by Epstein and Zin (1989)

recursive preferences with the stock market return used as a proxy for the return

on the total wealth portfolio):

(30) Mt+1 = exp{(Ct+1/Ct)
−γ1 Rγ2M,t+1}.

To make the results comparable with those obtained using the EL/ET approaches,

we set γ1 = γ = 10 and estimate γ2 using the GMM approach to match the Euler

equation for the excess market return. Substantially smaller estimates of the cost

of fluctuations are obtained relative to those with EL and ET. Specifically, using

total consumption as the measure of the aggregate consumption expenditures, the

cost of all fluctuations at the one- to five-year horizons are 1.7%, 4.6%, 9.80%,

11.7%, and 11.7%, respectively. In contrast, the corresponding cost estimates
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obtained using the EL (Table 1, Panel B, Row 1) are almost double at each

horizon at 2.1%, 6.8%, 16.1%, 19.6%, and 19.7%, respectively.

Second, we present results for the linear adjustment to the SDF proposed in

Lars P. Hansen and Ravi Jagannathan (1997) to enable it to successfully price

assets. When the excess market return is the sole test asset, this implies:

(31)

Mt+1 = (Ct+1/Ct)
−γ −

∑T
t=1

(
(Ct+1/Ct)

−γ) (RM,t+1 −RF,t)∑T
t=1 (RM,t+1 −RF,t)2

(RM,t+1 −RF,t) .

Once again, to make the results comparable with those obtained using the EL/ET

approaches, we set γ = 10. The resulting estimates of the costs are economically

implausible and unstable, varying from 1.76% at the one-year horizon to 43.7% at

the 5-year horizon to 304.0% at the ten-year horizon. The absence of well-behaved

asymptotic behaviour in this case, unlike those obtained with EL/ET, highlights

the numerical instability of linear adjustments and, therefore, the desirability of

the EL and ET approaches in such settings.

B. Time-Variation in Cost of Fluctuations

We now proceed to use our methodology to estimate the cost of aggregate

consumption fluctuations in different states (or, times). We focus on the cost of

all one-period consumption fluctuations, given by Equation (28). We present the

results obtained with the SEL estimator. The alternative SET estimator produces

similar results, reported in Appendix A.A6.

We first estimate the time series of the cost in our baseline sample covering

the period 1930-2015. Each year corresponds to a particular state and the SEL

approach estimates the welfare benefits of eliminating all consumption uncer-

tainty in the subsequent year. In our implementation, we use nondurables and

services consumption as the measure of the aggregate consumption expenditures

and the excess return on the market portfolio as the test asset. Note that the

SEL procedure requires the specification of the investors’ conditioning set. In

our baseline results, we use an exponentially-weighted moving average of lagged
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consumption growth as the conditioning variable – a natural candidate in the

context of consumption-based models.

Figure 5 presents the time series of the cost. Several features are immediately

evident from the figure. First, the cost is strongly time-varying – it varies from

0.15% to 8.0% a year, with an average of 0.75%. Second, the cost is strongly

countercyclical, rising sharply during recessionary episodes. The average of the

cost over the subsample that corresponds to recession years, where a year is

classified as a recession year if there is an NBER-designated recession in any

of its quarters, is 1.17%. The estimated costs are particularly high during the

period of the Great Depression 1930-1933, with a mean of 5.8% and a maximum

as high as 8.0%.11 In contrast, the average cost over the subsample comprised of

expansionary episodes alone is less than half of that during recessions at 0.53%.

The correlation between the cost and a dummy variable that takes the value 1 in

a given year if there is an NBER-designated recession in any of its quarters and 0

otherwise is 36.1%. Finally, the estimates of the cost are economically large, given

that they represent the welfare benefits of eliminating all consumption uncertainty

for one period alone.12

Figure 5. Time-Varying Cost of One-Period Consumption Fluctuations, 1929-2015
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11The y-axis in Figure 5 is capped at 3% despite the maximum cost being as high as 8% so as to
render the remaining (smaller) cost estimates readable.

12Note that, because of Jensen’s inequality, the average of the time series of the cost does not exactly
equal the average cost of all one-year fluctuations computed in the previous section.
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Notes: The figure plots the time series of the cost of one-period consumption uncertainty. The cost

is estimated using the SEL approach, using nondurables and services consumption as the measure of

the consumption expenditures, the excess return on the market portfolio as the sole test asset, and an

exponentially-weighted moving average of lagged consumption growth as the conditioning variable. The

sample is annual, covering the period 1930-2015.

Next, to assess the sensitivity of the results, we present the time series of the

cost for alternative choices of the sample period and conditioning set. First,

note that our baseline results were obtained for the 1929-2015 sample period.

This raises the potential concern that our results may be largely driven by the

volatile prewar period, that includes the episodes of the Great Depression and the

aftermath of World War II (the only two macroeconomic disaster episodes in the

US identified in Barro (2006) over this period). To mitigate this concern, Figure

6 presents the time series of the annualized cost (red line) using quarterly data

over the postwar period 1947:Q1–2015:Q4.

The strong countercyclical variation in the cost is immediately evident from

the figure. In fact, the countercyclicality is even more pronounced in the postwar

period, compared to the longer 1929–2015 sample – the correlation with the re-

cession dummy is 49.2% over the former period compared with 36.1% in the latter

longer sample. Also, the magnitudes of the costs over the postwar subperiod are

similar, regardless of whether the full 1929-2015 sample or the postwar period

alone is used in the estimation of these costs. For instance, over the two years

of the Great Recession, 2008–2009, the cost of removing one-year fluctuations is

estimated to be 1.20% on average using the longer sample, similar to the average

cost of 0.86% obtained using the postwar sample alone.

As a second robustness check, we present results for an expanded conditioning

set. Note that our baseline results were obtained using a weighted average of past

consumption growth as the sole conditioning variable. This may potentially raise

concerns about the robustness of the findings. Therefore, we estimate the time

series of the cost when the conditioning set includes not only an exponentially-

weighted average of past consumption growth, but also an exponentially-weighted

average of a principal component extracted from a broad cross section of over a
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hundred macro variables. Specifically, we obtain panel data on 106 macroeco-

nomic variables from Sydney Ludvigson’s web site, based on the Global Insights

Basic Economics Database and The Conference Board’s Indicators Database. The

variables cover six broad categories of macroeconomic data: output, labor market,

housing sector, orders and inventories, money and credit, and price levels. We

transform each variable to make it stationary and then extract a principal com-

ponent from the cross section of transformed variables.13 The time series of the

cost is presented in Figure 6 (black line). Since data on the broad cross section

are only available from the mid-sixties, the cost estimates start from 1966:Q1.

The figure shows that the recovered time series of the cost seems quite robust to

the choice of the conditioning set.

Figure 6. Time-Varying Cost: Robustness to Sample Period and Conditioning Set
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Notes: The figure plots the time series of the cost of one-period consumption uncertainty. The cost

is estimated using the SEL approach, using nondurables and services consumption as the measure of

the consumption expenditures and the excess return on the market portfolio as the sole test asset. The

conditioning set consists of an exponentially-weighted moving average of lagged consumption growth (red

line) and lagged consumption growth and a principal component extracted from a broad cross section of

106 macro variables (black line). The sample is quarterly, covering the period 1947:Q1–2015:Q4 (red

13We refer the reader to Ludvigson’s website for a detailed description of these variables and the
transformations applied to make them stationary.



THE MARKET COST OF BUSINESS CYCLE FLUCTUATIONS 43

line) or 1966:Q1–2015:Q4 (black line).

Overall, our results suggest that the cost of consumption fluctuations is strongly

countercyclical and this offers, at least a partial, explanation of the high costs of

business cycle fluctuations that we estimate in Section III.A.

IV. Interpretation and Sensitivity of Results to Alternative Choices of γ

Note that our methodology takes the stance that the true (unknown) SDF has

the multiplicative form in Equation ((1)), with a component that is a function

of consumption growth as in the power utility model and a second (unknown)

ψ-component. In this section, we first present evidence supporting the presence

of the consumption growth component in the SDF, thereby justifying our choice.

Specifically, we show that the recovered ψ-component of the I-SDF has similar

properties for all values of γ in the economically plausible range, including γ = 0

in which case the SDF is not constrained to depend on consumption growth at

all apriori. We use nondurables and services consumption as the measure of the

aggregate consumption expenditures, the excess return on the market as the sole

test asset, and the EL approach to recover the I-SDF.

If we set γ = 0, i.e. when no structure is imposed on the pricing kernel, the

correlation between the recovered ψ and consumption growth is −0.35. Thus,

even without including a consumption growth component in the pricing kernel,

the recovered I-SDF is strongly negatively correlated with consumption growth.

As γ is varied from [1, 20] – the economically plausible range that contains the

calibrated values of this parameter from most asset pricing models – Figure 7,

Panel A shows that the correlation between the recovered ψ and consumption

growth remains very similar both in magnitude and sign. This suggests that

the additional ψ-component of the SDF helps to magnify the increased marginal

utility during bad states characterized by low realizations of consumption growth

and, therefore, implies a higher cost of consumption fluctuations relative to that

implied by the power utility kernel that is a function of consumption growth alone.

Highlighting further the information content of the consumption growth com-

ponent, the figure panel also shows that, for values of γ higher than its EL point
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estimate of 26.2 (red-dashed line), the correlation between consumption growth

and the recovered ψ switches sign, becoming strongly positive. In other words,

for these values of γ, the ψ-component serves to counteract the effect of the con-

sumption growth component, i.e., it serves to mitigate the extreme effects of low

realizations of consumption growth on the marginal utility. Figure 7, Panel B

plots the time series of the recovered ψ for two alternative values of γ – a value of

10, our baseline value, which is below its EL point estimate (black solid line) and

a value of 43 that is symmetrically above the point estimate (red-dashed line).

The figure shows clearly the strong negative co-movement between the two time

series – the correlation between them is −74.8% – consistent with the findings in

Panel A.

Overall, the results suggest that the consumption growth component of the

SDF, that is relied upon in a large class of consumption-based macro models,

is not merely a misspecification but rather an important ingredient of the true

underlying SDF. This helps further justify the inclusion of this component in our

multiplicative specification of the SDF (see Equation (1)).

Figure 7. Correlation
(

Ct
Ct−1

, ψt
)

and time series of ψ for Alternative values of γ

0 20 40 60 80 100

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Panel A: Corr (∆(C) , ψ)

ρ

 ψ for Different Values of γ

ψ

1940 1960 1980 2000

0.
00

5
0.

01
5

0.
02

5
0.

03
5

10
43

Notes: Panel A plots the correlation between the two multiplicative components of the pricing kernel,

namely the recovered ψ and consumption growth, for alternative values of the SDF parameter γ. Panel
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B plots the time series of the recovered ψ for two different values of γ, namely those corresponding to our

baseline value of 10 (black solid line) and a value of 43 that is symmetrically above its point estimate of

26.2 (red-dashed line). Consumption denotes the real personal consumption expenditure of nondurables

and services and the excess return on the market portfolio is the sole test asset used in the recovery of

the ψ component using the EL approach. The sample is annual covering the period 1929-2015.

Next we assess the sensitivity of the magnitudes of the cost of fluctuations to

alternative choices of γ. So far, we have reported estimates of the cost of con-

sumption fluctuations using a baseline value of γ = 10 . As discussed in Section

III, this baseline value corresponds to the minimum value of this parameter typ-

ically required by a broad class of consumption-based models to explain asset

prices.

Table 2 presents the one- to five-year term structure of the cost of all (Columns

2-6) and business cycle (Columns 7-11) fluctuations in consumption, for several

different choices of γ. To facilitate comparison, in Row 1, we repeat the cost

estimates for the baseline value of γ = 10 from Table 1, Panel A, Row 1. This

corresponds to the value of γ typically used in the long run risks paradigm.

Table 2: Cumulative Cost of Consumption Fluctuations for Alternative γ

All Fluctuations B. C. Fluctuations

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr

Panel A: Nondurables & Services Consumption

γ= 10.0 1.53 5.15 11.75 14.28 14.44 .56 1.48 3.39 3.90 3.57

γ= 2.0 0.64 2.00 3.36 3.59 3.52 .18 0.53 1.02 1.08 1.00

γ= 3.5 0.79 2.54 4.62 5.14 5.13 .22 .68 1.36 1.48 1.36

γ= 16.0 2.42 7.54 17.7 22.0 22.0 1.04 2.41 5.17 5.97 5.48

The table reports the (cumulative) costs of all aggregate consumption fluctuations (Columns 2-6) and

the costs of business cycle fluctuations in consumption (Columns 7-11), over one-to five-year horizons.

Rows 1-4 present the results for alternative values of the SDF parameter γ. Consumption denotes the

real personal consumption expenditure of nondurables and services. The costs are calculated using the

I-SDF recovered from the market portfolio alone with the EL approach. The sample is annual covering

the period 1929-2015.

Row 2 presents the cost estimates for γ = 2, the value commonly used in the

external habit paradigm. The magnitudes of the cost estimates are smaller for
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γ = 2 compared to those obtained for γ = 10. Specifically, the cost of all one- to

five-year fluctuations varies from 1.5%–14.4% for the latter value of γ compared

to 0.6%–3.5% for the former value. Similar patterns obtain for the cost of business

cycle fluctuations – the cost of one- to five-year fluctuations varies from 0.6%–

3.6% for γ = 10 compared to 0.2%–1.0% for γ = 2. Note, however, that while

the magnitudes of the costs reduce when moving to a lower value of γ, the cost

of business cycles continues to constitute a substantial fraction (a quarter to a

third) of the cost of all fluctuations – 28.1%, 26.5%, 30.4%, 30.1%, and 28.4% at

the one- to five-year horizons, respectively.

Very similar conclusions obtain in Row 3, that presents the cost estimates for

γ = 3.5, the value commonly used in the rare disasters paradigm. The only

difference with respect to Row 2 is that the cost estimates are higher in Row 3

compared to those obtained in Row 2 owing to the higher value of γ.

We next present the results for γ = 16, the value assumed in models with

complementarities in consumption. This value is higher than our baseline value

of 10 and Row 4 shows that the estimates of the cost are much higher than

those obtained in the baseline case. In particular, the cost of one- to five-year

fluctuations varies from 2.4%–22.0% in the case of all fluctuations and from 1.0%–

5.5% for business cycle fluctuations. Like with all the other values of γ, the costs

of business cycles constitute between a quarter to a third of the costs of all

fluctuations.

Overall, the results suggest that the precise magnitude of the cost of fluctuations

is somewhat sensitive to the assumed value of the utility curvature parameter γ,

with larger values implying larger costs. However, the findings that business cycle

fluctuations constitute a substantial proportion – between a quarter to a third –

of the cost of all consumption fluctuations is robust to the value of this parameter.

V. Conclusion

We propose a novel approach to measure the welfare costs of aggregate economic

fluctuations. Our methodology does not require a full specification of the prefer-

ences of consumers or any assumptions about the dynamics of the data generating
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process. Instead, using data on consumption growth and returns on a chosen set

of assets, we rely on an information-theoretic (or relative entropy minimization)

approach to estimate the pricing kernel. We refer to the resulting kernel as the

information kernel, or the I-SDF, because of the information-theoretic approach

used in its recovery. Unlike the CRRA kernel, or Lucas’ original specification

that imposes the additional assumption of i.i.d. lognormality of consumption

growth on the CRRA model, the I-SDF accurately prices a broad set of assets

– unconditionally as well as conditionally, in-sample as well as out-of-sample –

thereby successfully capturing the relevant sources of priced risk in the economy.

Using the I-SDF, we show that the welfare benefits from the elimination of all

consumption uncertainty are large – typically, an order of magnitude bigger than

those implied by Lucas’ specification. Moreover, the costs of business cycle fluc-

tuations in consumption constitute a substantial proportion – typically between a

quarter to a third – of the costs of all consumption uncertainty. Finally, using an

extension of our information-theoretic methodology, we present evidence that the

welfare benefits of eliminating aggregate consumption fluctuations are strongly

time-varying and countercyclical.

The difference in the results from earlier literature can be attributed, at least

in part, to two factors. First, the I-SDF correctly prices broad cross sections of

assets, and thereby identifies the relevant sources of priced risk more accurately

than existing models. Second, the I-SDF has a strong business cycle component,

suggesting that business cycle risk is an important source of priced risk. Also,

the non-requirement of a fully specified utility function characterizing consumers’

preferences and assumptions about the dynamics of the data generating process

makes the I-SDF, and therefore the resulting estimates of the costs of fluctuations,

more robust to misspecification.

Note that, our results indicate that the cost of business-cycle fluctuations may

be much higher than previously thought. Our estimates do not incorporate the

possibility that government policies effective in curbing fluctuations may alter

the trend growth in consumption. Barlevy (2004), for instance, shows that in

an endogenous growth framework, shutting down aggregate uncertainty increases
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annual consumption growth by .35-.40%. This would serve to further increase the

cost of fluctuations.

Finally, the present paper focuses on estimating the welfare costs of aggregate

consumption uncertainty. However, our methodology is considerably general and

may also be applied to obtain the costs of uninsurable idiosyncratic risk, such as

labor income risk. This is left for future research.
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Online Appendix

A1. Solution for the ET Estimator

As with the EL estimator, the ET estimator is also numerically simple to im-
plement. Specifically, the ψ-component is estimated (up to a positive constant
scale factor) as:

(A1) ψ̂t =
eθ̂(γ)′ret (∆ct)

−γ

1
T

∑T
t=1 e

θ̂(γ)′ret (∆ct)
−γ ∀t,

where θ̂(γ) ∈ RN is the vector of Lagrange multipliers that solves the uncon-
strained dual problem:

(A2) θ̂(γ) = arg min
θ

[
log

(
1

T

T∑
t=1

eθ
′ret (∆ct)

−γ

)]
.

A2. Performance of the Estimator: Simulation Evidence

In this section, we provide simulation evidence on the performance of the EL
and ET estimators in measuring the cost of aggregate fluctuations, in both cor-
rectly specified and misspecified settings. In our first example (hereafter referred
to as Economy I), we consider a hypothetical exchange economy in which the
representative agent has power utility preferences with a constant CRRA and
consumption growth is i.i.d. log-normal. Note that, in this correctly specified
setup, ψt ≡ 1. In our second example (hereafter referred to as Economy II), we
consider a standard long run risks economy where the representative investor has
Kreps-Porteus recursive preferences and the aggregate consumption growth rate
has a persistent predictable component and fluctuating volatility. With Economy
II, we consider two scenarios – the first corresponds to when the econometri-
cian correctly uses the SDF implied by recursive preferences and the second to
when she erroneously uses the power utility preferences when recovering the ψ-
component with the EL/ET approach. Note that, in the former scenario, the true
ψt ≡ 1 whereas in the latter scenario the ψ-component captures the return on the
investor’s total wealth portfolio. We assess whether the estimators successfully
recover the cost of fluctuations in these settings for empirically realistic sample
sizes.

Consider first Economy I. The aggregate consumption growth evolves according

to: log (∆Ct)
P∼ N

(
µc, σ

2
c

)
. The following Euler equation holds in equilibrium:

(A3) 0 = EP [(∆Ct+1)−γ (Rm,t+1 −Rf,t+1)
]
,

where Rm,t and Rf,t denote the market return and the risk free rate, respectively,
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at time t. Note that, Equation (A3) may be rewritten as

(A4) 0 = EP [(∆Ct+1)−γ ψt+1 (Rm,t+1 −Rf,t)
]
,

where ψt ≡ 1.
This example economy fits into the framework described in Section II. There-

fore, given time series data on consumption growth, the market return, and risk
free rate, the EL/ET approaches can be used to estimate (up to a strictly positive
constant scale factor) the ψ-component of the kernel:

(A5){
ψ̂ELt

}T
t=1

= arg max
{ψt}Tt=1

T∑
t=1

log(ψt) s.t.
1

T

T∑
t=1

(∆ct+1)−γ ψt+1(Rm,t+1−Rf,t+1) = 0.

(A6){
ψ̂ETt

}T
t=1

= arg min
{ψt}Tt=1

T∑
t=1

ψt log(ψt) s.t.
1

T

T∑
t=1

(∆ct+1)−γ ψt+1(Rm,t+1−Rf,t+1) = 0.

Using the recovered ψ, the term structure of the cost of fluctuations may be
computed as described in Section II.B.

We show, via simulations, that the EL and ET approaches successfully identify
the cost of fluctuations. Note that, in this economy, the equilibrium price-dividend
ratio is Pt

Dt
= ν, a constant, where

(A7) ν =

exp

[
log(δ) + (1− γ)µc +

(1− γ)2σ2
c

2

]
1− exp

[
log(δ) + (1− γ)µc +

(1− γ)2σ2
c

2

] ,

and the equilibrium risk free rate is also constant at:

(A8) Rf =
1

exp

(
log(δ)− γµc +

γ2σ2
c

2

) .

To perform our simulation exercise, we calibrate µc and σc to the sample mean
(2.8%) and volatility, (3.4%) respectively, of (log) consumption growth in our data
(real per capita total consumption over 1929-2015). The preference parameters
are calibrated at δ = 0.99 and γ = 10. We simulate a time series of consumption
growth. Using the simulated consumption growth, we obtain the market return

as Rm,t+1 =

Pt+1
Ct+1

+1

Pt
Ct

· Ct+1

Ct
= ν+1

ν ·
Ct+1

Ct
, where ν is defined in Equation (A7). The

risk free rate is simply a constant, given by Equation (A8).
Using the above time series, we recover {ψt}Tt=1 using the EL and ET approaches

in Equations (A5) and (A6), respectively. Armed with the ψ-component, we
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obtain the term structure of the cost of all consumption fluctuations. We repeat
the above exercise for 10, 000 simulated samples. We report the averages and
90% confidence intervals of the costs of fluctuations across these simulations and
compare them to their true population values. We present results for a sample
size of T = 87, corresponding to the length of the historical sample at the annual
frequency that we use in our empirical analysis.

The results are reported in Table A.1. Panel A reports the true values of the cost
of one- to five-year fluctuations. Panel B presents the results across the simulated
samples. Each cell in Panel B has four entries – the left (right) two are obtained
with the EL (ET) approach, with the top number denoting the average of the
cost across the simulated samples and the bottom numbers in square brackets
its 90% confidence interval. The results show that the EL method is successful
at accurately estimating the cost of fluctuations. Specifically, the EL-implied
mean costs of fluctuations at the one- to five-year horizons across the 10, 000
simulations are essentially identical to the corresponding true costs. The 90%
confidence intervals are fairly tight. The results obtained with the ET approach
are virtually identical to those obtained with EL.

Table A.1: Simulation Results for Economy I, Cost of All Fluctuations (%)

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr

Panel A: True Values
1.15 1.68 2.16 2.62 3.03

Panel B: Simulated Values
T=87 1.15

[1.15,1.16]
/ 1.15
[1.15,1.16]

1.66
[1.42,1.66]

/ 1.66
[1.43,1.89]

2.11
[1.66,2.57]

/ 2.12
[1.68,2.58]

2.51
[1.84,3.23]

/ 2.53
[1.87,3.24]

2.88
[1.98,3.86]

/ 2.89
[2.02,3.85]

The table reports the (cumulative) costs of all aggregate consumption fluctuations, over one-to five-year
horizons in a hypothetical economy. The samples are simulated from a hypothetical endowment economy
in which a representative agent has power utility preferences and the aggregate consumption growth is
i.i.d. log-normal. Panel A presents the true values of these costs of fluctuations. Panel B presents the
average of the costs, along with the 90% confidence intervals (in square brackets below), computed from
10, 000 simulated samples of size corresponding to the length of the historical data (T=87). To obtain
the costs in Panel B, the ψ-component of the SDF is recovered using the EL (left entries in each cell)
and ET approach (right entries in each cell).

Consider next Economy II. This is the standard Bansal and Yaron (2004) long
run risks economy, i.e. the representative investor has recursive preferences and
aggregate consumption and dividend growth rates have a small persistent pre-
dictable component and fluctuating volatility that captures time-varying eco-

nomic uncertainty. Therefore, the SDF takes the form Mt =
(

Ct
Ct−1

)− η
ρ
δηRη−1

c,t︸ ︷︷ ︸
ψt

,

where γ denotes the CRRA, ρ the elasticity of intertemporal substitution, η =
1−γ
1− 1

ρ

, and Rc,t =
Pc,t+Ct
Pc,t−1

denotes the unobservable return on total wealth.

For this economy, we first consider the scenario when the econometrician uses
the correct SDF when recovering the ψ-component of the pricing kernel using the
EL and ET approaches. For the EL approach, for instance, this involves:
(A9){
ψ̂ELt

}T
t=1

= arg max
{ψt}Tt=1

T∑
t=1

log(ψt) s.t.
1

T

T∑
t=1

(
ct+1

ct

)− η
ρ

rη−1
c,t ψt+1(rm,t+1−rf,t+1) = 0.
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We also consider the scenario when the econometrician, in the absence of knowl-
edge of the true SDF, incorrectly uses the power utility SDF when recovering its
ψ-component:
(A10){
ψ̂ELt

}T
t=1

= arg max
{ψt}Tt=1

T∑
t=1

log(ψt) s.t.
1

T

T∑
t=1

(
ct+1

ct

)−γ
ψt+1(rm,t+1−rf,t+1) = 0.

As with Economy I, we recover ψ in both the above scenarios using the EL
and ET approaches and use it to compute the term structure of the cost of
all consumption fluctuations. The results are presented in Table A.2. Panel
A presents the true costs whereas Panels B and C report the mean and 90%
confidence intervals of the costs obtained from 10, 000 simulations for the correctly
specified and misspecified scenarios, respectively. To simulate the model, we
use the annual parameter estimates from George M. Constantinides and Anisha
Ghosh (2011).

Panel B shows that, for the correctly specified setup, the EL and ET approaches
identify the term structure of the cost of one- to five-year fluctuations almost per-
fectly – the mean costs across the simulated samples are very close to the corre-
sponding true costs in Panel A. The confidence intervals are tight for empirically
realistic sample sizes. Panel C shows that, even when the SDF is misspecified, the
EL and ET approaches identify the term structure of the cost of one- to five-year
fluctuations fairly accurately. The mean cost estimates across the simulations
are a bit higher than the true values – as an example, for T = 87, the EL ap-
proach produces an estimate of 0.39% at the 1-year horizon versus the true value
of 0.14%, 0.75% versus 0.32% at the 2-year horizon, and 2.28% versus 0.98% at
the 5-year horizon. However, note that the difference is economically small in all
cases.

Table A.2: Simulation Results for Economy II, Cost of All Fluctuations (%)

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr

Panel A: True Values
.14 .32 .54 .76 .98

Panel B: Simulated Values, Correctly Specified SDF
T=87 .12

[−.01,.26]
/ .12
[−.01,.26]

.30
[.07,.61]

/ .30
[.06,.60]

.54
[.16,1.09]

/ .54
[.15,1.09]

.82
[.26,1.67]

/ .81
[.24,1.66]

1.14
[.35,2.34]

/ 1.12
[.33,2.32]

Panel C: Simulated Values, Misspecified SDF
T=87 .39

[.23,.58]
/ .42
[.25,.65]

.75
[.42,1.21]

/ .80
[.44,1.29]

1.19
[.62,2.02]

/ 1.26
[.65,2.13]

1.71
[.83,3.03]

/ 1.80
[.87,3.16]

2.28
[1.04,4.20]

/ 2.39
[1.10,4.37]

The table reports the (cumulative) costs of all aggregate consumption fluctuations, over one-to five-year

horizons in a hypothetical economy. The samples are simulated from a hypothetical endowment economy

in which a representative agent has Epstein-Zin recursive preferences and the aggregate consumption

growth rate has a persistent component and fluctuating volatility. Panel A presents the true values of

these costs of fluctuations. Panels B and C present the average of the costs, along with the 90% confidence

intervals (in square brackets below), computed from 10, 000 simulated samples of size corresponding to

the length of the historical annual data (T=87). To obtain the costs in Panels B–C, the ψ-component of

the SDF is recovered using the EL (left entries in each cell) and ET approach (right entries in each cell).

In Panel B, the econometrician uses the correct SDF implied by recursive preferences whereas in Panel
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C, she erroneously uses the power utility SDF when recovering the ψ-component of the SDF using the

EL/ET approaches.

Overall, the simulation results suggest that the EL and ET estimators per-
form reasonably well at recovering the cost of fluctuations for empirically realistic
sample sizes, in both correctly specified and misspecified settings. This lends
further support for its use in the recovery of the pricing kernel for welfare cost
calculations.

A3. Data Description

The extraction of the I-SDF for use in welfare cost calculations requires data
on the aggregate consumption expenditures and returns on a set of traded assets.
Ideally, we would like to use the longest available time series of these variables
in the estimation to mitigate concerns that certain possible states may not have
been realized in the sample. At the same time, to assess the robustness of our key
results, we would like to repeat our analysis for different measures of consumption
expenditures as well as different sets of assets. While data on total consumption is
available from 1890 onwards, disaggregated expenditures on different consumption
categories (e.g., durables, nondurables, and services) are only available from 1929
onwards. Moreover, data on broad cross sections of asset returns are also not
available prior to the late 1920s. Therefore, we focus on a baseline data sample
starting at the onset of the Great Depression (1929-2015).

For the 1929-2015 data sample, we consider two alternative measures of con-
sumption: (i) the personal consumption expenditure on nondurables and services,
and (ii) the personal consumption expenditure on durables, nondurables and ser-
vices. The consumption data are obtained from the Bureau of Economic Analysis.
Nominal consumption is converted to real using the Consumer Price Index (CPI).

We use different sets of assets to extract the I-SDF: (i) the market portfolio,
proxied by the Center for Research in Security Prices (CRSP) value-weighted
index of all stocks on the NYSE, AMEX, and NASDAQ, and (ii) the 6 equity
portfolios formed from the intersection of two size and three book-to-market-
equity groups. The proxy for the risk-free rate is the one-month Treasury Bill
rate. The returns on all the above assets are obtained from Kenneth French’s data
library. Annual returns for the assets are computed by compounding monthly
returns within each year and converted to real using the CPI. Excess returns on
the portfolios are then computed by subtracting the risk free rate.

To further assess the robustness of our results, we also repeat our analysis
using two alternative data sets: (i) total personal consumption expenditure over
the 1890-2015 sample and the excess return on the S&P 500 as the sole asset,
and (ii) the personal consumption expenditure on nondurables and services along
with the excess return on the CRSP value-weighted market portfolio, over the
entire available quarterly sample 1947:Q1-2015:Q4.
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A4. Robustness

Alternative Definitions of Relative Entropy and Data Sample

In this section, we perform a number of checks to establish the robustness of our
estimates of the cost of all consumption uncertainty as well as the cost of business
cycle fluctuations in consumption reported in Section III.A. For all the robustness
tests, consumption refers to the total personal consumption expenditure.14

Our first robustness check uses yet another definition of relative entropy (a
third alternative to the EL and ET approaches). Specifically, we recover the
risk-neutral measure Q such that:
(A11)

Q̂ = min
Q

∫
log

(
dQ
dQm

)
dQ =

∫
log

(
q(z)

qm(z)

)
q(z)dz s.t. 0 =

∫
Re(z)q(z)dz,

where dQm
dP = (∆C)−γ

E[(∆C)−γ]
. In other words, Qm is the risk neutral measure implied

by the power utility model with a constant CRRA. Thus, Equation (A11) recovers
the risk neutral measure Q that is minimally distorted relative to the CRRA
model implied risk neutral measure Qm, while also successfully pricing the set
of test assets used in the estimation. Note that the main difference between
Equation (A11) and the EL and ET estimators defined in Equations (14) and
(15), respectively, is that while the latter two minimize the relative entropy (or
distance) between the recovered measure and the physical measure, the former
minimizes the distance between the recovered risk neutral measure and the risk
neutral measured implied by a candidate model SDF.

The solution to Equation (A11) is obtained as:

(A12) q̂t =
eθ̂(γ)′ret (∆ct)

−γ

1
T

∑T
t=1 e

θ̂(γ)′ret (∆ct)
−γ ∀t,

where θ̂(γ) ∈ RN is the vector of Lagrange multipliers that solves the dual prob-
lem:

(A13) θ̂(γ) = arg min
θ

[
log

(
1

T

T∑
t=1

eθ
′ret (∆ct)

−γ

)]
.

We use the recovered risk neutral measure q̂t to calculate the cost of consump-
tion fluctuations. The results, reported in Table A.3, Row 1 of Panels A and B,
for the scenarios when the test assets consist of the market portfolio alone and the
six Fama-french portfolios, respectively, are very similar to those obtained with
the EL and ET (Table 1, Panel B, Rows 1-4) approaches.

14Very similar results are obtained using nondurables and services consumption and are omitted for
brevity.
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Table A.3: Cumulative Cost of Total Consumption Fluctuations, Robustness Checks
All Fluctuations B. C. Fluctuations

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr
Panel A: Market Portfolio

I-SDFAlt 1.83 4.92 10.87 12.75 12.70 .851 1.75 3.48 3.82 3.52
1890-2015 1.38 2.69 4.85 6.84 8.24 .931 1.39 2.08 2.54 2.69

Panel B: FF 6 Portfolios

I-SDFAlt 1.76 4.46 8.96 14.12 14.67 .764 1.61 3.02 4.20 4.00
1890-2015 - - - - - - - - - -

The table reports the (cumulative) cost of all aggregate consumption fluctuations (Columns 2-6) and the

cost of business cycle fluctuations in consumption (Columns 7-11), for one- to five-year time horizons.

Consumption denotes the real total personal consumption expenditure (includes durables, nondurables,

and services). The costs are calculated using the I-SDF extracted the risk-neutral measure recovered by

minimizing the distance from the CRRA model-implied risk-neutral measure while satisfying the pricing

restrictions (Row 1) and the I-SDF extracted with the EL approach over the longer 1890-2015 sample

(Row 2). Panel A presents results when the excess return on the market portfolio is the sole asset used

to recover the I-SDF. In Panel B, on the other hand, the I-SDF is estimated using the 6 Fama-French

size and book-to-market-equity sorted portfolios. The sample is annual covering the period 1929-2015,

except for Row 3 where it extends over 1890-2015.

Second, we present the costs of fluctuations using the EL approach with data
going back as far as 1890. The excess return on the market is the sole test asset,
with the return on the S&P composite index used as a proxy for the market
return and the prime commercial paper rate as a proxy for the risk free rate. The
data are obtained from Robert Shiller’s website. The costs of all and business
cycle fluctuations in consumption, presented in Row 2 of Panel A, are smaller
than those obtained using the baseline 1929-2015 sample (see Table 1, Panel B,
Rows 1 and 3 for the EL and ET, respectively). The smaller estimates of the
cost obtained in this longer data sample can be accounted for, at least partly,
by the usage of the commercial paper rate as a proxy for the risk free rate,
thereby leading to an underestimation of the magnitude of the equity premium in
this sample. Specifically, the average level of the equity premium is 7.9% in the
baseline sample, more than double the value of 3.1% in the longer 1890 onwards
sample. Moreover, just as with the baseline sample, the cost of business cycle
fluctuations still accounts for a substantial fraction (more than a third) of the
cost of all consumption fluctuations for all the horizons considered.15

Overall, our results suggest that the estimates of the cost of aggregate economic
fluctuations are fairly robust to the measure of consumption expenditures, the set
of test assets used to recover the I-SDF, the choice of sample period, as well as
the definition of relative entropy. This lends further support to the quantitative
estimates in the paper.

A5. Out-of-Sample Performance of the I-SDF

This section reproduces a table from Ghosh, Julliard and Taylor (2022) on the
out-of-sample performance of the I-SDF vis a vis other popular factor models.

15Since the size and book-to-market-equity sorted portfolios are not available prior to the late 1920s,
we cannot recover the I-SDF using these portfolios over the 1890-2015 sample.
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We construct the out-of-sample I-SDF in a rolling fashion. In particular, for
a given cross section of asset returns, we divide the time series of returns into
rolling subsamples of length T and final date Ti, i = 1, 2, 3, ..., and constant
s := Ti+1 − Ti. In subsample i, we estimate the vector of Lagrange multipliers

θ̂Ti by solving the minimization in Equations (17)–(18). Using the estimates of

the Lagrange multipliers, θ̂Ti , the out-of-sample I-SDF, M̂Ti is obtained for the
subsequent s periods (i.e. for t such that Ti + 1 ≤ t ≤ Ti+1) using equation
(19). This process is repeated for each subsample to obtain the time series of
the estimated kernel over the out-of-sample evaluation period. We then use this
out-of-sample I-SDF as the single factor to price different cross-sections of test
assets.

To place the widely used multi factor models (e.g., the Fama-French three- and
five-factor models) on an equal footing with the one-factor I-SDF, we present
the empirical performance of the multi factor models when a multi-factor model-
implied SDF is constructed as a linear function of the risk factors, with the coef-
ficients estimated in a rolling out-of-sample fashion using only past returns data
on the same cross section of portfolios used to recover the I-SDF. For instance,
we define the FF3 model-implied SDF as:

(A14) MFF3
t = c0 +

3∑
j=1

cjfj,t,

where {fj,t}3j=1 = {RM,t, RSMB,t, RHML,t} and the coefficients cj , j = 0, 1, 2, 3,
are estimated in a rolling out-of-sample fashion using only past returns data on
the cross-section of portfolios, so as to satisfy the Euler equation restrictions for
these portfolios:

(A15) 0 = E[(Ri,t −Rf,t)(c0 +
3∑
j=1

cjfj,t)].

The resulting MFF3
t is then used as the single risk factor in standard Fama-

Macbeth cross sectional regressions for different sets of test assets to assess its
empirical performance. Similarly, the FF5 model-implied SDF is defined as

MFF5
t = c0 +

5∑
j=1

cjfj,t.

In practice, we set the size of the rolling window T = 30 years, i.e. 360 months,
and s = 12. The results, presented in Table A.4, show the superior performance
of the I-SDF relative to the CAPM, the FF3, and the FF5 models – the estimated
intercept is smaller and the OLS adjusted R2 larger for the I-SDF relative to the
other models for all three sets of test assets.
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Table A.4: Out-of-Sample Performance of I-SDF

Row const. λsdf R
2
OLS (%) R

2
GLS (%) T 2 q

Panel A: 25 FF Portfolios
I-SDF .003

(4.83)
−1.37
(−4.95)

49.4 27.6 45.0
(.004)

.119

CAPM .012
(3.79)

−.004
(−1.41)

3.95 30.3 74.5
(.000)

.116

FF3 .008
(15.6)

.743
(2.46)

17.4 33.9 53.7
(.000)

.109

FF5 .009
(9.16)

−.005
(−1.38)

1.20 36.6 54.2
(.000)

.210

Panel B: 55 Test Assets
I-SDF .004

(21.3)
−.64

(−8.88)
59.0 39.2 74.4

(.028)
.133

CAPM .007
(3.56)

−.001
(−.44)

−1.51 5.88 132.5
(.000)

.205

FF3 .006
(18.6)

1.46
(0.57)

−1.26 6.40 130.7
(.000)

.203

FF5 .007
(46.8)

−.479
(−4.78)

28.8 24.0 63.7
(.149)

.229

Panel C: 25 FF + 30 Industry + 10 Momentum
I-SDF .005

(17.6)
−.66

(−7.06)
43.3 27.4 151.1

(.000)
.272

CAPM .009
(5.49)

−.002
(−1.40)

1.50 19.6 194.4
(.000)

.301

FF3 .005
(7.64)

−.718
(−2.30)

6.28 25.7 167.3
(.000)

.283

FF5 .007
(30.3)

−4.83
(−1.21)

.70 23.9 156.6
(.000)

.544

Cross-sectional regressions of average excess returns of different sets of test assets on the estimated factor

loadings for different asset pricing models. Panel A presents the results when the test assets consist of

the 25 size and BM sorted portfolios of FF. Panel B presents results when the test assets consist of 10

size-sorted, 10 BM-sorted, 10 momentum-sorted, 10 short term reversal sorted, 10 long term reversal

sorted, and 5 industry-sorted portfolios. Panel C presents results when the test assets consist of the 25

FF, 30 Industry, and 10 Momentum-sorted portfolios. In each panel, the first row presents the results

when the factor is the I-SDF. This I-SDF is constructed from 15 portfolios – consisting of the smallest

and largest deciles of size, BM, momentum, short term reversal, and long term reversal sorted portfolios

and 5 industry portfolios – using a relative entropy minimizing procedure, in a rolling out-of-sample

fashion starting in 1963:07. Rows 2–4 present the results for the SDFs implied by the CAPM, the FF3,

and the FF5 models, respectively. For each model, the table presents the intercept and slope, along with

t-statistics in parentheses. It also presents the OLS adjusted R2 and the GLS adjusted R2. The last

two columns present, respectively, Shanken’s (1985) cross-sectional T 2 statistic along with its asymptotic

p-value in parentheses, and the q statistic that measures how far the factor-mimicking portfolios are from

the mean–variance frontier.

A6. Time-Varying Cost of One-Period Consumption Fluctuations Using SET

The Smoothed Exponential Tilting (SET) estimator is defined as:
∀i ∈ {1, . . . , T}, ∀γ ∈ Θ,

(A16){
f̂SETi,· (γ)

}
= arg min

(fi,·)∈∆i

T∑
j=1

log

(
fi,j
ωi,j

)
fi,j s.t.

T∑
j=1

fi,j × (∆cj)
−γ rej = 0.

Figure A1 plots the time series of the cost of one-period consumption uncer-
tainty obtained with the SET approach (blue-dashed line). For the sake of com-
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parison, we also plot the time series of the cost obtained with the SEL approach
(solid red line). The correlation between the two time series is 99.94%.

Figure A1. Time-Varying Cost of One-Period Consumption Fluctuations, 1929-2015
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Notes: The figure plots the time series of the cost of one-period consumption uncertainty. The cost is

estimated using the SEL (solid red line) and SET (blue-dashed line) approaches, using nondurables and

services consumption as the measure of the consumption expenditures, the excess return on the market

portfolio as the sole test asset, and an exponentially-weighted moving average of lagged consumption

growth as the conditioning variable. The sample is annual, covering the period 1930-2015.


