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Wherever there is risk, it must be compensated to the lender by a higher premium or interest.

— J. R. McCullough (1830, pp. 508–9)

Despite its size and first order relevance for firm financing, after six decades of empirical

research, there is still very little agreement about the sources of risk that drive prices in the

corporate bond market. Leveraging recent advances in Bayesian econometrics, we fill this

gap and provide a comprehensive analysis of all the factors and models proposed to date, as

well as their possible combinations, and their interplay with asset pricing factors identified

in the equity market literature. This allows us to pinpoint both the robust sources of priced

risk, and a novel benchmark stochastic discount factor (SDF) that prices corporate bonds,

in- and out-of-sample, significantly better than all existing models.

The early literature documents risk factors, meant to capture economy-wide conditions,

attitude toward risk, and firm characteristics, common to stocks and bonds. However, more

recent studies propose alternative factors, frequently derived from interest rate term struc-

tures and specific bond metrics, which diverge from those typically associated with the stock

market. That is, the corporate bond space develops its own “factor zoo,” independent from

the equity zoo and its associated models, as the latter are considered insufficient to explain

corporate bond risk premia. More recently, the accepted wisdom is again called into ques-

tion. First, what had arguably emerged as the benchmark model for bonds (Bai, Bali, and

Wen (2019)), is now retracted due to lead and lag errors present in the factors. Second, using

misspecification-robust inference, Dickerson, Mueller, and Robotti (2023) show that the low

dimensional factor models in the literature add little spanning to a simple bond version of the

Capital Asset Pricing Model (the CAPMB). Third, van Binsbergen, Nozawa, and Schwert

(2023) find that, once returns are adjusted for duration risk, the simple (equity) CAPM has

higher explanatory power for corporate bonds than benchmark models. That is, the overall

understanding of risks priced in the corporate bond market has not progressed much beyond

the theoretical milestones of decades past.

We analyze empirically over 562 trillion models stemming from the joint zoo of corporate

bond and equity factors, and we do so while relaxing the cornerstone assumptions of previous

studies: the existence of a unique, low-dimensional, correctly specified and well identified
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factor model. First, we find that the “true” latent SDF of corporate bonds is dense in

the space of observable bond and equity factors—literally dozens of factors, both tradable

and nontradable, are necessary to span the risks driving bond prices. Yet, the SDF-implied

maximum Sharpe ratio is not excessive, indicating that multiple factors load on common

sources of fundamental risk. Importantly, density of the SDF implies that the sparse models

considered in the previous literature are affected by severe misspecification and, as we show,

outperformed by the most likely (four to eight) SDF components that we identify.

Second, a Bayesian model averaging–stochastic discount factor (BMA-SDF) over the

space of all possible models (including bond, equity, and nontradable factors) explains cor-

porate bond risk premia better than all existing models and most likely factors, both in-

and out-of-sample. Moreover, the BMA-SDF has a clear business cycle pattern: it increases

during expansions and peaks right before recessions and around the time of financial market

crashes. That is, the estimated SDF behaves as one would expect from the intertemporal

marginal rate of substitution of an agent exposed to the risks arising from general economic

conditions and market turmoil.

Third, we show that the majority of tradable factors designed to price corporate bonds are

unlikely sources of priced risk. However, we find compelling evidence that a novel (tradable)

factor, theoretically motivated yet never used before for asset pricing, and capturing the

bond post-earnings announcement drift (PEADB), should be included in the SDF with very

high probability.1 Furthermore, two nontradable factors, meant to capture inflation risk

(Kang and Pflueger (2015)) and the slope of the term structure of interest rates (Koijen,

Lustig, and Van Nieuwerburgh (2017)), a well documented predictor of economic activity,

are likely components of the SDF. Similarly, a broad based corporate bond market index is

also likely to be part of the SDF (albeit the single factor CAPMB is rejected by the data).

Moreover, when expanding the set of candidate pricing factors to include equity-based ones,

measures of firm size (Fama and French (1992), Daniel, Mota, Rottke, and Santos (2020)),

market liquidity (Pástor and Stambaugh (2003)), and long term reversal (Jegadeesh and

1The post-earnings announcement drift phenomenon is the observation, first documented in equity mar-
kets, that firms that experience positive earnings surprises subsequently earn higher returns than those with
negative earnings surprises. See, e.g., Hirshleifer and Teoh (2003), Della Vigna and Pollet (2009), Hirshleifer,
Lim, and Teoh (2011) and Nozawa, Qiu, and Xiong (2023) for the microfoundations of this phenomenon.

2



Titman (2001)) also have posterior probabilities of being part of the SDF that exceed (albeit

in some cases only marginally) their prior values.

Fourth, beside the individual factors mentioned above, both nontradable and equity-

based factors jointly play an important role in the BMA-SDF, and are more likely compo-

nents of the pricing measure than all other bond-based tradable factors. Nevertheless, several

factors are only weakly identified in the cross-section of bond returns, and, hence, invalidate

canonical inference (see, e.g., Gospodinov, Kan, and Robotti (2014)). This, importantly, is

not a problem for the Bayesian method that we employ, since it is by design robust to weak

factors (Bryzgalova, Huang, and Julliard (2023)) and, as we show, successfully shrinks the

market price of risk of weak and (likely) spurious factors toward zero.

Remarkably, all of the above results (SDF factor density, BMA-SDF pricing ability, strong

evidence in favour of PEADB, identity of most likely factors and their types) are extremely

stable across data sources and sample periods, and independently of whether test asset re-

turns are computed in excess of the short term risk free rate or a duration-matched U.S.

Treasury Bond rate. Nevertheless, the outperformance of the BMA-SDF compared to exist-

ing models, and the salient role of equity factors for pricing corporate bonds in cross-sectional

out-of-sample exercises, is even more evident when considering duration-adjusted bond re-

turns. Furthermore, the out-of-sample pricing performance of the BMA-SDF is very stable

across 127 different cross-sections of test assets (virtually spanning the entire universe con-

sidered in the previous literature).

Globally, the total market capitalizations of bond and equity markets are almost on par

at about USD 125 trillion each. The total size of the corporate bond market is around USD

40 trillion, with the United States accounting for 27% thereof. That is, in market value

terms, corporate bonds are about a third of the size of equities. However, from an asset

manager’s perspective, it is arguably equally import to understand what drives bond and

stock prices, as corporate bonds are usually held by institutional investors or via managed

investment vehicles (see, e.g., Boyarchenko, Elias, and Mueller 2023). Understanding what

factors, and models, are relevant for pricing the universe of corporate bonds in the U.S. (and

the rest of the world) is salient for investors, as it guides how investment portfolios of these

assets should be formed in the first place. Importantly, our results can be used directly to
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motivate and implement smart beta strategies for corporate bond portfolios.

Furthermore, the complete market benchmark states that the pricing measure should be

consistent across asset classes, hence a systematic exploration of the sources of risk priced in

corporate bonds should encompass not only factors proposed in the bond market literature,

but also those suggested for the equity space—that is, one should parse the joint factor zoo

of bonds and equities, and that is exactly what we deliver.

Note that, unlike equities, where factor data is mostly readily available, a reliable public

database of corporate bond factors does not exist. To address this pitfall for conducting

rigorous and replicable asset pricing in bonds, we use best in class data and make all factors

and code available on openbondassetpricing.com. Moreover, to avoid the litany of potential

data errors arising from the Trade Reporting and Compliance Engine (TRACE) transaction-

based data, we use the industry-grade data from the Intercontinental Exchange (ICE) and

the Lehman Brothers Database over the combined 1986:01 to 2021:09 sample.

Closely related literature. Our research contributes to the active and growing body

of work that critically reevaluates existing findings in the empirical asset pricing literature

using robust inference methods. Following Harvey, Liu, and Zhu (2016), a large body of

literature has tried to understand which existing factors (or their combinations) drive the

cross-section of (equity) returns. In particular, Gospodinov, Kan, and Robotti (2014) develop

a general method for misspecification-robust inference, while Giglio and Xiu (2021) exploit

the invariance principle of the PCA and recover the price of risk of a given factor from the

projection on the span of latent factors driving a cross-section of returns. Similarly, Dello-

Preite, Uppal, Zaffaroni, and Zviadadze (2023) recover latent factors from the residuals of

an asset pricing model, effectively completing the span of the SDF. Feng, Giglio, and Xiu

(2020) combine cross-sectional asset pricing regressions with the double-selection LASSO of

Belloni, Chernozhukov, and Hansen (2014) to provide valid inference on the selected sources

of risk when the true SDF is sparse. Kozak, Nagel, and Santosh (2020) uses a ridge-based

approach to approximate the SDF and compare sparse models based on principal components

of returns with sparse models based on characteristics. Our approach instead identifies a

dominant pricing model—if such model exists—or a BMA across the space of all models,
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even if the true model is not sparse in nature, hence cannot be proxied by a small number

of factors.

As Harvey (2017) stresses in his American Finance Association presidential address, the

factor zoo naturally calls for a Bayesian solution—and we adopt one. In particular, we

leverage the Bayesian method for model estimation, selection, and averaging developed in

Bryzgalova, Huang, and Julliard (2023). Numerous strands of the literature rely on Bayesian

tools for asset allocation, model selection, and performance evaluation. Our approach is most

closely linked to Pástor and Stambaugh (2000) and Pástor (2000) in that we assign a prior

distribution to the vector of pricing errors, and this maps into a natural and transparent

prior for the maximal Sharpe ratio achievable in the economy. Barillas and Shanken (2018)

also extend the prior formulation of Pástor and Stambaugh (2000) and provide a closed-

form solution for the Bayes factors when all factors are tradable in nature. Chib, Zeng,

and Zhao (2020) show that the improper prior formulation of Barillas and Shanken (2018)

is problematic, and provide a new class of priors that leads to valid comparison for traded

factor models. As in these papers, our model and factor selection is based on posterior

probabilities, but our method is designed to work with both tradable and nontradable factors.

Most importantly, our approach can deal with a very large factor space, is not affected by

the common identification failures that invalidate inference in asset pricing, and provides an

optimal method for aggregating the pricing information stemming from all factors.2

As widely documented, ratings and default risk proxies are insufficient to explain cor-

porate bond risk premia (see, e.g., Elton, Gruber, Agrawal, and Mann (2004) and Driessen

(2005)). Furthermore, in the complete market benchmark the pricing measure should be

consistent across asset classes, and equilibrium models normally yield nontradable state

variables. Hence, we consider a very broad collection of potential sources of risk that goes

well beyond the set of bond tradable factors that have been the main focus of a large part

2BMA is an optimal aggregation procedure for a very wide set of optimality criteria (see, e.g., Raftery
and Zheng (2003) and Schervish (1995)). In particular, it is “optimal on average,” i.e., no alternative method
can outperform the BMA for all values of the true unknown parameters. Avramov, Cheng, Metzker, and
Voigt (2023) also propose a framework to integrate factor models via posterior probabilities in the presence
of model uncertainty, but their approach is only appropriate for tradable factors and is not designed to be
robust to the identification and inference problems arising from weak factors—problems that, as shown in
Bryzgalova, Huang, and Julliard (2023), cannot be solved by simply projecting nontradable factors on the
space of returns and then performing inference using the resulting mimicking portfolios.
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of the corporate bond literature (see Dickerson, Mueller, and Robotti (2023), Dickerson,

Robotti, and Rossetti (2023) and Dick-Nielsen, Feldhütter, Pedersen, and Stolborg (2023)

for critical reassessments of these factors).

In particular, our paper is related to the body of work that explores whether equity

market risk proxies (see, e.g., Blume and Keim (1987), Fama and French (1993) and Elton,

Gruber, Agrawal, and Mann (2001)), equity volatilities (see, e.g., Campbell and Taksler

(2003) and Chung, Wang, and Wu (2019)), and equity-based characteristics (see, e.g., Fisher

(1959), Giesecke, Longstaff, Schaefer, and Strebulaev (2011)) are likely drivers of corporate

bond returns. Overall, we find that not only several equity-based factors have posterior

probabilities of being part of the SDF that exceed their prior values, but also that equity

factors jointly carry relevant information for pricing corporate bonds.

Several theoretical contributions stress that real economic activity and the business cycle

should be among the drivers of bond risk premia (see, e.g., Bhamra, Kuehn, and Strebulaev

(2010), Khan and Thomas (2013), Chen, Cui, He, and Milbradt (2018), and Favilukis, Lin,

and Zhao (2020)). Echoing both the general equilibrium model predictions of Gomes and

Schmid (2021) and the empirical findings of Elton, Gruber, and Blake (1995) and Elkamhi,

Jo, and Nozawa (2023), we show that the BMA-SDF has a clear business cycle pattern and

peaks right before recessions and at times of market crashes, and that nontradable factors

(especially proxies of the economic cycle such as the slope of the yield curve), are salient

components of the pricing measure.3 Furthermore, in line with both the model predictions

and international empirical evidence of Kang and Pflueger (2015) (see also Bhamra, Fisher,

and Kuehn (2011) and Ceballos (2022)), we find that inflation volatility risk is a likely

component of the SDF that drives corporate bond prices.

Our work also relates to behavioural biases and market frictions in asset pricing. In

particular, mirroring the evidence of Daniel, Hirshleifer, and Sun (2020) and Bryzgalova,

Huang, and Julliard (2023) in the equity market, we show that the post earning announce-

3Elton, Gruber, and Blake (1995) show that adding fundamental macro-risk variables (such as GNP,
inflation and term spread measures) significantly improves pricing performance relative to equity and bond
market index models. Elkamhi, Jo, and Nozawa (2023) show that the long-run consumption risk measure of
Parker and Julliard (2003) yields a one-factor model with significant explanatory power for corporate bonds,
and such an SDF, as documented in Parker and Julliard (2005), has a very strong business cycle pattern.
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ment drift of bonds (see Nozawa, Qiu, and Xiong (2023)) is an extremely likely driver of

corporate bond risk premia. Furthermore, we find empirical support, albeit much weaker,

for the (equity) long-term reversal factor of Jegadeesh and Titman (2001). And finally, we

find some evidence for market liquidity carrying explanatory power for the cross-section of

bond returns (see, e.g., Bao, Pan, and Wang (2011) and Lin, Wang, and Wu (2011)), in that

the inclusion of a nontradable liquidity proxy (Pástor and Stambaugh (2003)) in the SDF

is, at least marginally, supported by the data.

1 Data

We rely on the constituents of the corporate bond data set from the Bank of America

Merrill Lynch (BAML) High Yield (H0A0) and Investment Grade (C0A0) indices made

available via the Intercontinental Exchange (ICE), which starts in January 1997 and ends in

September 2021. For the period from January 1986 to December 1996 we use the Lehman

Brothers Fixed Income Database (LHM). This data is then merged with the Mergent Fixed

Income Securities Database (FISD), which contains additional bond characteristics. We

follow van Binsbergen, Nozawa, and Schwert (2023) and begin the LHM sample in 1986,

the first year with at least 100 high-yield bonds per month in the sample.4 After merging

the two data sets and applying the standard filters (discussed below), our bond-level data

spans almost 36 years over the period 1986:01 to 2021:09 (T = 429 months) and comprises

over 30,000 unique bonds. A detailed description of the databases and associated cleaning

procedures is available in Section IA.1 of the Internet Appendix

In contrast to the Trade Reporting and Compliance Engine (TRACE) transaction-based

data, ICE data have three key advantages. First, monthly prices in the ICE data are sampled

exactly at the end of each month, which means monthly returns always use month-end prices.

This is particularly important when using equity-characteristics as inputs to compute bond

factor returns. Aligning the timing avoids potential look-ahead bias or lead-lag errors and

4The start date of January 1986 is broadly consistent with prior literature that utilises the LHM data.
See Eom, Helwege, and Huang (2004), Feldhütter and Schaefer (2018), and Avramov, Chordia, Jostova, and
Philipov (2022). Prior to 1986, bonds in LHM are predominantly investment grade (91% of bonds) with
67% of all bonds priced with matrix pricing (i.e., the prices are not actual dealer quotes).
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ensures that both stock and bond returns are computed with prices that are sampled on the

last day of each month. In contrast, this is not the case for the TRACE data, where a bond

must trade (i.e., transact) sufficiently close to the end of the month to be included in the

monthly data set. Given that on average bonds do not trade on roughly 68% of days (see,

e.g., Palhares and Richardson (2020)), computing monthly returns with daily TRACE data

is complicated by using prices that are not sampled at month end or are missing altogether.

A further consequence of this feature of the data is a larger sample size of ICE relative to

the Wharton Research Data Services (WRDS) version of TRACE.

Second, the effects of market microstructure noise are, for the most part, removed, as

ICE only provides the bid-side of the trade (or quote if no trade occurs).5 Furthermore, the

effects of potential data errors and ad hoc data decisions are inherently removed because the

data are provided (pre-processed) by an institutional grade data provider.

Finally, ICE provides pre-computed corporate bond characteristics including the total

bond return, duration-adjusted return, bond duration and convexity, as well as several prox-

ies for credit spreads taking into account bond optionality and different risk-free rate bench-

marks. This makes ICE particularly convenient for empirical analysis and alleviates any

potential error in computing these metrics, i.e., it introduces homogeneity into the results

such that they can be trusted.

Because of the above considerations, and as noted by Kelly, Palhares, and Pruitt (2023),

ICE has become the de facto ‘gold standard’ for corporate bond empirical studies and is (or

should be) the primary data source for the corporate bond literature.6

We apply the following standard filters to the bond data: i) We remove bonds that are not

publicly traded in the U.S. market. These include bonds issued through private placement,

bonds issued under Rule 144A, bonds that are not traded in USD, and bonds from issuers

not based in the U.S. ii) We remove bonds that are classified as structured notes, mortgage

backed or asset backed, agency backed, equity linked or convertible. iii) We exclude bonds

5Although the level of market microstructure noise (MMN) has consistently declined since the introduc-
tion of the TRACE system, Dickerson, Robotti, and Rossetti (2023) show that it can still adversely affect
the measurement of corporate bond price-based anomaly characteristics.

6See Kelly and Pruitt (2022) and Andreani, Palhares, and Richardson (2023) for detailed discussions on
the differences and similarities between ICE and TRACE data.
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that have a floating coupon rate. iv) Finally, we exclude bonds that have less than one year

remaining until maturity. For robustness, we replicate our main results using the TRACE

data processed by the WRDS data science team over a shorter sample beginning in 2002:09,

and show that they remain materially unchanged.

Corporate bond returns. In the baseline analysis, we specify excess bond returns as

the total bond return minus the one-month risk-free rate of return.7 In addition, we follow

the advice of van Binsbergen, Nozawa, and Schwert (2023) and repeat our analysis with

‘duration-adjusted’ returns, where the bond excess return is computed as the total bond

return minus a portfolio of duration-matched U.S. Treasury Bond returns. Details of the

duration adjustment are provided in Appendix C. Note that we do not further winsorize,

trim, or tamper with the underlying bond return data in any way, avoiding the biases that

such procedures normally induce.

Corporate bond factors and anomalies. Our bond-specific factor zoo includes 14

traded bond factors and 11 nontraded factors.8 From the equity literature, we include an

additional 24 traded factors. Overall, we consider a total of 49 factors, of which 38 are traded

and 11 are nontraded. We provide an overview of the factors in Table A.1 of Appendix B. All

of the traded equity and nontraded factors are publicly available from the various authors’

personal websites listed therein.9

Corporate bond test asset portfolios. For our cross-sectional analyses at the portfolio-

level, we construct a set of bond portfolios that are sorted on various bond characteristics.

To ensure a broad enough cross-section for our in-sample estimation of the BMA, we use 50

bond portfolios. The first 25 portfolios are double-sorted on credit spreads and bond size.

The remaining 25 portfolios are double-sorted on bond ratings and time-to-maturity. All

portfolios are value-weighted by the amount outstanding of the bond issue, defined as the

dollar par value multiplied by the number of outstanding units of the bond.

7We source the one-month risk-free rate from Kenneth French’s website.
8Many of the nontraded factors employed for bonds have also been used for stocks.
9We make our 14 traded bond factors available on the companion website: openbondassetpricing.com
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The chosen characteristics yield a significant dispersion of average in-sample bond port-

folio returns. The inclusion of portfolios sorted on credit spreads is motivated by the work

of Nozawa (2017) who finds that bond credit spreads are an important driver of the cross-

sectional variation in excess corporate bond returns.10 Bond ratings are provided by Standard

& Poors (S&P) and are a fundamental characteristic of bonds. They underpin most traded

bond factors, define institutional investment guidelines, and capture default risk.

Finally, we include the traded bond factors as additional test assets since, as empha-

sized in Barillas and Shanken (2016), factors included in a model should price any factors

excluded from the model. This, along with the use of the nonspherical pricing error formu-

lation (i.e., GLS) also imposes (asymptotically) the restriction of factors pricing themselves.

Overall, the cross-section contains a broad array of 64 portfolios, sorted on well-known bond

characteristics and the underlying traded bond factors themselves.

Out-of-sample bond portfolios To test the asset pricing efficacy of the BMA-SDF es-

timated on the in-sample test assets, we specifically construct a broad cross-section of addi-

tional bond portfolios using bond characteristics that are not used to construct the in-sample

portfolios. To do so, we include decile-sorted portfolios on bond historical 95% value-at-risk,

duration, bond value (Houweling and Van Zundert (2017)), bond book-to-market (Bartram,

Grinblatt, and Nozawa (2020)), long-term reversals (Bali, Subrahmanyam, and Wen (2021)),

momentum (Jostova, Nikolova, Philipov, and Stahel (2013)), as well as the 17 Fama French

industry portfolios (following Lewellen, Nagel, and Shanken (2010)), for a total of 77 port-

folios.

2 Econometric method

This section introduces the notation and summarises the methods employed in in our

empirical analysis. We consider linear factor models for the Stochastic Discount Factor

(SDF). We focus on the SDF representation since we aim to identify the factors that have

10We follow the credit spread portfolio formation method in Elkamhi, Jo, and Nozawa (2023) and construct
the portfolios based on the average bond credit spreads between months t− 12 and t− 1.
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pricing ability for the cross-section of corporate bonds returns.11

The returns of N test assets, which are long-short portfolios, are denoted by Rt =

(R1t . . . RNt)
⊤, t = 1, . . . T . We consider K factors, ft = (f1t . . . fKt)

⊤, t = 1, . . . T , that can

be either tradable or nontradable. A linear SDF takes the form Mt = 1 − (ft − E[ft])
⊤λf ,

where λf ∈ RK is the vector containing the market prices of risk associated with the indi-

vidual factors. Throughout the paper, E[X] or µX denote the unconditional expectation of

arbitrary random variable X.

In the absence of arbitrage opportunities, we have that E[MtRt] = 0N , hence expected

returns are given by µR ≡ E[Rt] = Cfλf , where Cf is the covariance matrix between Rt

and ft, and prices of risk (λf ) are commonly estimated via the cross-sectional regression

µR = λc1N +Cfλf +α = Cλ+α, (1)

where C = (1N ,Cf ), λ
⊤ = (λc,λ

⊤
f ), λc is a scalar average mispricing (equal to zero under

the null of the model being correctly specified), 1N is an N -dimensional vector of ones, and

α ∈ RN is the vector of pricing errors in excess of λc (also equal to zero under the null of

the model).

Such models are usually estimated via GMM, MLE or two-pass regression methods (see,

e.g., Hansen 1982, Cochrane 2005). Nevertheless, as pointed out in a large literature, the

underlying assumptions for the validity of these methods (see, e.g., Newey and McFadden

1994), are often violated (see, e.g., see Kleibergen and Zhan 2020 and Gospodinov and

Robotti 2021), and identification problems arise in the presence of a weak factor (i.e., a

factor that does not have enough comovement with any of the assets, or has very little cross-

sectional dispersion in this comovement, but is nonetheless considered a part of the SDF).

These issues in turn lead to wrong inference for both weak and strong factors, erroneous

model selection, and inflate the canonical measures of model fit.12

Albeit robust frequentist inference methods have been suggested in the literature for

11Recall that a factor might have a significant risk premium even if it is not part of the SDF, just because
it has non-zero correlation with the true latent SDF. Hence, in order to identify the pricing measure, focusing
on the SDF representation is the natural choice.

12These problems are common to GMM (Kan and Zhang, 1999a), MLE (Gospodinov, Kan, and Robotti,
2019), Fama-MacBeth regressions (Kan and Zhang 1999b, Kleibergen 2009), and even Bayesian approaches
with flat priors for risk prices (Bryzgalova, Huang, and Julliard, 2023).
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specific settings, our task is complicated by the fact that we want to parse the entire zoo

of bond factors, rather than estimate and test an individual model. Furthermore, we aim

to identify the best specification—if a dominant model exist—or aggregate the information

in the factor zoo into a single SDF if no clear best model arises. Therefore, we rely on

the Bayesian method proposed recently in Bryzgalova, Huang, and Julliard (2023), since

it is applicable to both tradable and nontradable factors, can handle the entire factor zoo,

is valid under misspecification, and is robust to weak inference problems. This Bayesian

approach is conceptually simple, since it leverages the naturally hierarchical structure of

cross-sectional asset pricing, and restores the validity of inference using transparent and

economically motivated priors.

Consider first the time-series layer of the estimation problem. Without loss of generality,

we order the K1 tradable factors first (f
(1)
t ), followed by K2 nontradable factors (f

(2)
t ),

hence ft ≡ (f
(1),⊤
t ,f

(2),⊤
t )⊤ and K1 + K2 = K. Denote with Yt ≡ ft ∪ Rt the union of

factors and returns, where Yt is a p-dimensional vector.13 Modelling {Yt}Tt=1 as multivariate

Gaussian with mean µY and variance matrix ΣY , and adopting the conventional diffuse

prior π(µY ,ΣY ) ∝ |ΣY |−
p+1
2 , yields the canonical Normal-inverse-Wishart posterior for the

time series parameters (µY ,ΣY ) in equations (A.7)-(A.8) of Appendix A.

The cross-sectional layer of the inference problem allows for misspecification of the fac-

tor model via the average pricing errors α in equation (1). We model these pricing er-

rors, as in the previous literature (e.g., Pástor and Stambaugh 2000, Pástor 2000), as

α ∼ N (0N , σ
2ΣR), yielding the cross-sectional likelihood (conditional on the time series

parameters)

p(data|λ, σ2) = (2πσ2)−
N
2 |ΣR|−

1
2 exp

{
− 1

2σ2
(µR −Cλ)⊤Σ−1

R (µR −Cλ)

}
, (2)

where in the cross-sectional regression the “data” are the expected risk premia, µR, and the

factor loadings, C ≡ (1N ,Cf ). The above likelihood can then be combined with a prior

for risk prices (presented below) to obtain a posterior distribution and guide inference and

model selection.

To handle model and factor selection we introduce a vector of binary latent variables

13If one requires the tradable factors to price themselves, then Yt ≡ (R⊤
t ,f

(2),⊤
t )⊤ and p = N +K2.
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γ⊤ = (γ0, γ1, . . . , γK), where γj ∈ {0, 1}. When γj = 1, the j-th factor (with associated

loadings Cj) should be included in the SDF, and should be excluded otherwise.14 In the

presence of potentially weak factors, and hence unidentified prices of risk, the posterior

probabilities of models and factors are not well defined under flat priors. Hence, we introduce

a (economically motivated) prior that, albeit not informative, restores the validity of posterior

inference (see Bryzgalova, Huang, and Julliard 2023). In particular, we model the uncertainty

underlying the estimation and model selection problem with a (continuous spike-and-slab)

mixture prior, π(λ, σ2,γ,ω) = π(λ | σ2,γ)π(σ2)π(γ | ω)π(ω), where

λj | γj, σ2 ∼ N
(
0, r(γj)ψjσ

2
)
. (3)

Note the presence of three new elements, ψj, r(γj), and π(ω), in the prior formulation.15

First, r(γj) captures the “spike-and-slab” nature of the prior formulation. When the

factor should be included, we have r(γj = 1) = 1, and the prior, the “slab”, is just a

diffuse distribution centred at zero. When instead the factor should not be in the model,

r(γj = 0) = r ≪ 1, the prior is extremely concentrated—a “spike” at zero. As r → 0, the

prior spike is just a Dirac distribution at zero, hence it removes the factor from the SDF.16

Second, ψj is a function of the data that (endogenously) penalises, like a shrinkage

estimator, factors that are likely to be causing identification failure:

ψj = ψ × ρ̃j
⊤ρ̃j, (4)

where ρ̃j ≡ ρj−
(

1
N

∑N
i=1 ρj,i

)
×1N , ρj is an N×1 vector of correlation coefficients between

factor j and the test assets, and ψ ∈ R+ is a tuning parameter that controls the degree of

shrinkage across all factors. That is, factors that have vanishing correlation with asset

returns, or extremely low cross-sectional dispersion in their correlations (hence cannot help

in explaining cross-sectional differences in returns), have a low value of ψj and are therefore

endogenously shrunk toward zero. Instead, such prior has no effect on the estimation of

14Note that we always include the common intercept in the cross-sectional layer, that is, γ0 = 1 always.
15For the cross-sectional variance scale parameter σ2 we assume the customary diffuse prior π(σ2) ∝ σ−2.

As per Proposition 1 of Chib, Zeng, and Zhao (2020), since the parameter σ is common across models and
has the same support in each model, the marginal likelihoods obtained under this improper prior are valid
and comparable.

16We set r = 0.001 in our empirical analysis.
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strong factors since these have large and disperse correlations with the test assets, yielding

a large ψj and consequently a diffuse prior.

Third, the prior π(ω) not only gives us a way to sample from the space of potential models,

but also encodes belief about the sparsity of the true model using the prior distribution

π(γj = 1|ωj) = ωj. Following the literature on predictors selection, we set

π(γj = 1|ωj) = ωj, ωj ∼ Beta (aω, bω) . (5)

Different hyperparameters aω and bω determine whether one a priori favors more parsimo-

nious models or not. The prior expected probability of selecting a factor is simply aω
aω+bω

.

We set aω = bω = 1 in the benchmark case, that is, we have a uniform (hence flat) prior

for the model dimensionality and each factor has an ex ante expected probability of being

selected equal to 50%.17

Furthermore, note that the only free “tuning” parameter in our setting, ψ in equation

(4), has a straightforward economic interpretation, since the expected prior Sharpe ratio

(SR) achievable with the factors is just Eπ[SR
2
f | σ2] = 1

2
ψσ2

∑K
k=1 ρ̃

⊤
k ρ̃k as r → 0.18 That

is, in our empirical analysis we report results for various prior expectations of the Sharpe

ratio achievable in the economy.19

The above hierarchical system yields a well defined posterior distribution from which all

the unknown parameters and quantities of interest (e.g., R2, SDF-implied Sharpe ratio, and

model dimensionality), can be sampled to compute posterior means and credible intervals

via the Gibbs sampling algorithm in Appendix A. Most importantly, these posterior draws

can be used to compute posterior model and factor probabilities, and hence identify robust

sources of priced risk and—if such model exists—a dominant model for pricing corporate

bonds.

Model and factor probabilities can also be used for aggregating optimally, rather then

selecting, the pricing information in the factor zoo. For each possible model γm that one

17However, we could set for instance, aω = 1 and bω >> 1 to favor sparser models.
18Without a uniform prior for the SDF dimensionality the prior Sharpe ratio value becomes Eπ[SR

2
f |

σ2] = aω

aω+bω
ψσ2

∑K
k=1 ρ̃

⊤
k ρ̃k as r → 0. Hence, beliefs about the prior Sharpe ratio and model dimensionality

fully pin down our hyperparameters.
19More precisely, we report results for different prior values of

√
Eπ[SR2

f | σ2].
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could construct with the universe of factors, we have the corresponding SDF: Mt,γm =

1 − (ft,γm − E[ft,γm ])⊤ λγm . Therefore, we construct a Bayesian Model Averaging SDF

(BMA-SDF) by averaging all possible SDFs using as weights the posterior probability of

each model:20

MBMA
t =

m̄∑
m=1

Mt,γm Pr (γm|data) , (6)

where m̄ is the total number of possible models.

The BMA aggregates information about the true latent SDF over the space of all possible

models, rather than conditioning on a particular model. At the same time, if a dominant

model exists (a model for which Pr (γm|data) ≈ 1), the BMA will use that model alone.

Moreover, BMA aggregation is optimal under a wide range of criteria, but in particular, it

is “optimal on average:” no alternative estimator can outperform it for all possible values

of the true unknown parameters.21 Furthermore, since its predictive distribution minimizes

the Kullback-Leibler information divergence relative to the true unknown data-generating

process, the BMA aggregation delivers the most likely SDF given the data, and the estimated

density is as close as possible to the true unknown one, even if all of the models considered

are misspecified.

3 Bayesian analysis of linear SDFs

In this section, we apply the hierarchical Bayesian method to a large set of factors pro-

posed in the previous bond and equity literature. We start by focusing on factors specifically

proposed to price the cross-section of corporate bonds in Section 3.1. In Section 3.2 we then

proceed to further include factors that successfully price the cross-section of equity returns

and highlight the factors that also contain relevant information for corporate bonds. Over-

all, we consider 38 tradable and 11 nontradable factors, yielding 249 ≈ 563 trillion possible

models for the combined bond and stock factor zoo, and 225 ≈ 33.6 million models for the

bond-based factors only.

20See, e.g., Raftery, Madigan, and Hoeting (1997) and Hoeting, Madigan, Raftery, and Volinsky (1999).
21See, e.g., Raftery and Zheng (2003) and Schervish (1995).
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3.1 The explanatory power of the corporate bond factor zoo

We start by only considering the pricing power of the 25 traded and nontraded bond

market factors as we are interested in gauging to what extent the cross-section of corporate

bond returns is priced by bond market specific factors. The test assets include 50 bond

portfolios sorted on credit spreads, size, rating and maturity and the 14 traded bond factors.

We use the continuous spike-and-slab approach Section 2 and we report both posterior

probabilities (given the data) of each factor (i.e., E[γj|data],∀j) and posterior means of the

factors’ price of risk (i.e., E[λj|data],∀j) in Figure 1 and Table 1. The prior for the Sharpe

ratio achievable with the linear SDF are set to a range of values computed as 20%, 40%,

60% and 80% of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded

factors which is equal to 3 annualized. That is, from a very strong degree of shrinkage (20%,

i.e., a prior Sharpe ratio value of 0.6 annualised), to a very moderate one (80% or a prior

annualized Sharpe ratio of 2.4).

Recall that we have a uniform (hence flat) prior for the model dimensionality and each

factor has an ex ante expected probability of being selected equal to 50% (dashed horizontal

line in Figure 1). Figure 1 illustrates that—with some notable exceptions—most factors

proposed in the corporate bond literature have a posterior probability of being part of the

SDF that is below 50%.

Several observations are in order. First, given its posterior probabilities across the range

of prior Sharpe ratios considered, there is strong evidence for including the PEADB (i.e.,

the bond post-earnings announcement drift) factor as a source of priced risk in the SDF.

This is a rather surprising result, as PEADB has not specifically been proposed as a priced

risk factor in the corporate bond literature. Nozawa, Qiu, and Xiong (2023) are the first to

document a post-earnings announcement drift in corporate bond prices and they rationalise

their findings in a stylised model of disagreement. They also show that a strategy that

purchases bonds issued by firms with high earnings surprises and sells bonds of firms with

low earnings surprises generates sizable Sharpe ratios and large risk-adjusted returns. On

the other hand, Bryzgalova, Huang, and Julliard (2023) and Avramov, Cheng, Metzker, and

Voigt (2023) find strong evidence that the stock market post-earnings announcement drift
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Figure 1: Posterior factor probabilities – bond factor zoo.

Posterior probabilities, E[γj |data], of the 25 bond related factors described in Appendix B. Test assets include
50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of
the one-month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth

factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . Posterior probabilities for different

values of the prior Sharpe ratio,
√

Eπ[SR2
f | σ2], set to 20%, 40%, 60% and 80% of the ex post maximum

Sharpe ratio of the 64 bond portfolios and traded factors. Sample period: 1986:01 to 2021:09 (T = 429).

(PEAD) factor of Daniel, Hirshleifer, and Sun (2020) exhibits a particularly strong posterior

probability for being included in the SDF for equity returns. Thus, it may seem natural to

expect a similar level of performance for the bond version of the factor. Second, the bond

market factor (MKTB) exhibits posterior probabilities above 50% for the full range of prior

Sharpe ratios, corroborating the findings in Dickerson, Mueller, and Robotti (2023) that the

bond market factor carries valuable information to explain risk premia of corporate bonds.

The result also mirrors the finding in Bryzgalova, Huang, and Julliard (2023) who conclude

that the stock market factor is a source of priced risk for equity returns when considered in

conjunction with all other factors in the equity factor zoo. Third, there is a small number

of factors that have posterior probabilities above 50% percent for all but very low values
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Table 1: Posterior factor probabilities and risk prices – bond specific factor zoo.

Factor prob., E[γj|data] Price of risk, E[λj|data]
Total prior Sharpe ratio Total prior Sharpe ratio

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.564 0.697 0.764 0.757 0.073 0.285 0.511 0.646
YSP 0.501 0.511 0.541 0.613 0.004 0.016 0.048 0.150
INFLV 0.499 0.513 0.545 0.604 0.006 0.026 0.072 0.199
MKTB 0.529 0.544 0.548 0.519 0.066 0.171 0.291 0.423
INFLC 0.497 0.495 0.496 0.495 0.000 0.000 0.000 0.001
LVL 0.495 0.494 0.495 0.496 0.000 −0.002 −0.004 −0.012
UNCf 0.497 0.505 0.500 0.475 −0.010 −0.035 −0.074 −0.133
UNCr 0.490 0.490 0.487 0.480 0.000 0.003 0.010 0.032
EPU 0.495 0.491 0.487 0.472 0.001 0.005 0.014 0.038
EPUT 0.493 0.492 0.488 0.467 0.000 0.001 −0.005 −0.018
UNC 0.494 0.487 0.471 0.439 −0.003 −0.009 −0.011 −0.001
CPTL 0.493 0.483 0.468 0.422 −0.006 −0.028 −0.058 −0.087
VAL 0.495 0.482 0.455 0.404 0.041 0.094 0.148 0.196
VIX 0.490 0.476 0.456 0.415 −0.008 −0.021 −0.049 −0.081
DRF 0.496 0.469 0.445 0.402 0.026 0.033 0.010 −0.049
CRY 0.497 0.474 0.437 0.378 0.040 0.083 0.115 0.140
MKTBD 0.478 0.453 0.424 0.377 0.019 0.016 −0.007 −0.054
DEF 0.476 0.455 0.427 0.369 −0.017 −0.071 −0.130 −0.17
HMLB 0.497 0.474 0.420 0.332 0.047 0.097 0.117 0.104
STREVB 0.485 0.459 0.416 0.343 0.001 −0.003 −0.009 −0.017
TERM 0.495 0.457 0.398 0.324 0.075 0.137 0.151 0.135
DUR 0.477 0.429 0.386 0.325 0.020 0.004 −0.035 −0.073
MOMB 0.480 0.434 0.364 0.276 −0.020 −0.032 −0.027 −0.014
LTREVB 0.480 0.432 0.361 0.267 0.021 0.036 0.030 0.018
CRF 0.456 0.398 0.350 0.280 0.009 0.036 0.074 0.095

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 25 bond
specific factors described in Appendix B. The prior for each factor inclusion is a Beta(1, 1), yielding a prior
expectation for γj of 50%. Test assets are the returns, in excess of the one-month risk-free rate, of 50 bond
portfolios sorted on credit spreads, size, rating and maturity, plus the 14 traded bond factors (N = 64).

Results are tabulated for different values of the prior Sharpe ratio,
√

Eπ[SR2
f | σ2], with values set to 20%,

40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. Sample period: 1986:01 to
2021:09 (T = 429).

of prior Sharpe ratio. In particular, there is some evidence that the (nontradable) inflation

volatility risk factor INFLV (see, e.g., Kang and Pflueger (2015) and Ceballos (2022)) and

the slope of the yield curve YSP (see, e.g., Koijen, Lustig, and Van Nieuwerburgh 2017)

should be included in the SDF.

That said, while there are a few factors for which the posterior probability is roughly

equal to the prior (implying that at least some of these factors, as discussed in the next

subsection, are likely to be weakly identified at best), there are a large set of factors that

is unlikely to be part of the SDF pricing the cross-section of bond returns. Specifically,

besides PEADB and MKTB, the traded bond market factors are overall highly unlikely to

be individually included in the SDF. For instance, with a prior Sharpe ratio set to 80% of
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the ex post maximum, the posterior probabilities of LTREVB, MOMB, and STREVB range

from 0.27 to 0.34.22 Other traded bond factors related to default and credit risk (DRF and

CRF) are also quite unlikely candidates to be included in the SDF. This finding is consistent

with Dickerson, Mueller, and Robotti (2023) who show that among the low dimensional

models they consider, other factors seem to be spanned by MKTB. However, as we show in

Internet Appendix IA.2, albeit MKTB carries a sizable, and statistically significant, ex-post

risk premium in two-pass regressions, the CAPMB—a factor model of the SDF with only

MKTB—is not supported by the data.

As pointed out in van Binsbergen, Nozawa, and Schwert (2023), to correct for the effect

of the secular decline in interest rates affecting most of our sample, it might be preferable

to construct returns on the test assets in excess of a duration-matched government bond

return, rather than using a simple risk free rate. The rationale for this duration-adjustment

is to isolate the portion of a bond performance that is ascribable solely to the credit risk of

each bond. Furthermore, they show that not only does the duration adjustment significantly

improve the ability of the CAPM to price corporate bonds, but it also changes the perfor-

mance of the factor models considered in the previous literature. Therefore, as explained in

Appendix C, we perform the duration adjustment for all our test assets and tradable factors,

and re-estimate both factor posterior probabilities and market prices of risk. As shown in

Figure A.1 and Table A.2 of Appendix C, we obtain almost identical results using these

duration-adjusted returns.

Overall, we conclude that there are only very few bond specific factors that, given the

data, are likely components of the SDF, and that only one factor—the bond post-earnings

announcement drift factor (PEADB)—is clearly a robust source of priced risk in the cross-

section of corporate bond returns. Next, we expand the set of factors to include those

proposed in the equity literature.

22See Table A.1 in Appendix B for a detailed description of the factors.
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Figure 2: Posterior factor probabilities – bond and stock factor zoo.

Posterior probabilities, E[γj |data], of 49 bond and stock factors described in Appendix B. Test assets include
50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of
the one-month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth

factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . Posterior probabilities for different

values of the prior Sharpe ratio,
√

Eπ[SR2
f | σ2], set to 20%, 40%, 60% and 80% of the ex post maximum

Sharpe ratio of the 64 bond portfolios and traded factors. Sample period: 1986:01 to 2021:09 (T = 429).

3.2 Pricing corporate bonds with equity market information

We now include an additional 24 factors from the equity factor zoo, bringing the total

number of factors that we consider to 49 and, consequently, yielding a space of about 563

trillion models to consider. As we are only interested in eliciting which factors contain pricing

information for the cross-section of corporate bond returns, we do not add the traded equity

factors to the cross-section of test assets. We proceed as before and report both posterior

probabilities (given the data) of each factor (i.e., E[γj|data],∀j) and posterior means of the

factors’ price of risk (i.e., E[λj|data],∀j) in Figure 2 and Table 2.

In terms of posterior probabilities, the set of most likely four factors does not change
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Table 2: Posterior factor probabilities and risk prices – bond and stock factor zoo

Factor prob., E[γj|data] Price of risk, E[λj|data]
Total prior Sharpe ratio Total prior Sharpe ratio

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.552 0.671 0.762 0.801 0.055 0.228 0.463 0.685
MKTB 0.523 0.543 0.554 0.545 0.053 0.144 0.260 0.413
INFLV 0.500 0.512 0.529 0.573 0.005 0.020 0.052 0.137
YSP 0.498 0.505 0.526 0.581 0.003 0.012 0.034 0.101
LTREV 0.493 0.500 0.512 0.526 0.005 0.023 0.064 0.151
SMB 0.494 0.501 0.510 0.516 0.008 0.033 0.088 0.185
LIQNT 0.496 0.498 0.503 0.518 −0.002 −0.008 −0.022 −0.062
SMBs 0.495 0.499 0.504 0.514 0.002 0.010 0.026 0.064
RMWs 0.499 0.500 0.499 0.497 0.000 0.000 0.000 0.000
MKTSs 0.497 0.498 0.497 0.502 −0.002 −0.009 −0.025 −0.06
CMAs 0.498 0.496 0.496 0.495 0.000 0.001 0.002 0.004
LVL 0.495 0.493 0.497 0.498 0.000 −0.001 −0.003 −0.008
INFLC 0.496 0.495 0.496 0.494 0.000 0.000 0.000 0.001
CMA 0.496 0.497 0.493 0.494 0.000 0.001 0.001 −0.002
BAB 0.494 0.497 0.494 0.492 0.002 0.008 0.020 0.045
R IA 0.497 0.497 0.494 0.489 0.000 0.000 −0.001 −0.005
UNCf 0.496 0.499 0.497 0.482 −0.008 −0.028 −0.059 −0.104
STREV 0.496 0.491 0.494 0.494 0.003 0.012 0.035 0.092
HML 0.496 0.496 0.494 0.488 0.000 0.001 0.002 0.002
UNCr 0.496 0.498 0.493 0.483 0.000 0.002 0.007 0.021
LIQ 0.496 0.495 0.492 0.482 −0.001 −0.005 −0.012 −0.023
MKTS 0.493 0.492 0.493 0.486 −0.006 −0.032 −0.081 −0.165
HMLs 0.492 0.491 0.492 0.487 0.000 0.001 0.003 0.006
EPUT 0.496 0.495 0.489 0.478 0.000 0.000 −0.003 −0.019
EPU 0.495 0.492 0.487 0.475 0.001 0.004 0.011 0.031
FIN 0.493 0.491 0.487 0.474 0.000 0.004 0.011 0.022
PEAD 0.494 0.491 0.486 0.470 −0.001 −0.002 −0.005 −0.008
RMW 0.494 0.489 0.484 0.473 0.001 0.006 0.016 0.038
HMLD 0.494 0.490 0.485 0.465 0.006 0.021 0.049 0.088
R EG 0.492 0.489 0.480 0.458 0.001 0.005 0.008 0.018
CPTL 0.494 0.491 0.477 0.456 −0.005 −0.022 −0.044 −0.07
CPTLT 0.495 0.485 0.475 0.447 −0.003 −0.018 −0.035 −0.043
UNC 0.492 0.487 0.476 0.446 −0.002 −0.007 −0.01 −0.005
R ROE 0.496 0.487 0.472 0.440 −0.006 −0.015 −0.028 −0.044
QMJ 0.488 0.481 0.469 0.451 −0.008 −0.021 −0.05 −0.111
VIX 0.493 0.484 0.466 0.437 −0.006 −0.017 −0.039 −0.073
MOMS 0.490 0.481 0.466 0.436 −0.003 −0.005 −0.004 0.007
VAL 0.500 0.487 0.463 0.416 0.033 0.079 0.124 0.167
DRF 0.497 0.479 0.453 0.423 0.022 0.034 0.02 −0.024
CRY 0.499 0.478 0.452 0.400 0.033 0.071 0.103 0.132
DEF 0.477 0.460 0.446 0.410 −0.012 −0.058 −0.122 −0.19
MKTBD 0.485 0.462 0.437 0.402 0.016 0.017 −0.005 −0.061
HMLB 0.498 0.479 0.439 0.368 0.038 0.086 0.115 0.117
TERM 0.496 0.472 0.425 0.366 0.062 0.13 0.161 0.168
STREVB 0.490 0.467 0.432 0.364 0.001 −0.002 −0.01 −0.021
DUR 0.476 0.436 0.401 0.345 0.018 0.013 −0.015 −0.044
MOMB 0.486 0.446 0.389 0.305 −0.016 −0.03 −0.027 −0.017
LTREVB 0.482 0.441 0.382 0.297 0.017 0.031 0.023 −0.001
CRF 0.465 0.416 0.367 0.312 0.006 0.027 0.061 0.093

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 49 bond
and equity factors described in Appendix B. The prior for each factor inclusion is a Beta(1, 1), yielding a
prior expectation for γj of 50%. Test assets are the returns, in excess of the one-month risk-free rate, of 50
bond portfolios sorted on credit spreads, size, rating and maturity, plus the 14 traded bond factors (N = 64).

Results are tabulated for different values of the prior Sharpe ratio,
√

Eπ[SR2
f | σ2], with values set to 20%,

40%, 60% and 80% of the ex post maximum Sharpe ratio of the test assets. Sample period: 1986:01 to
2021:09 (T = 429).
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when the equity factors are included. PEADB still has the highest posterior probability,

significatly larger than its prior value, and, thus, there is strong evidence to include the

post-earnings announcement drift for bonds in the SDF. The post-earnings announcement

drift for stocks instead (PEAD), that should be part of the SDF to price the cross-section

of equity returns according to previous studies, exhibits posterior probabilities below 50%

for the full range of prior Sharpe ratios. Apart from PEADB, the factors with the highest

posterior probabilities are still MKTB, INFLV and YSP.

The equity factors that have posterior probabilities above 50% are the long-term reversal

factor LTREV of Jegadeesh and Titman (2001),23 the SMB factor of Fama and French

(1992), the liquidity factor LIQNT of Pástor and Stambaugh (2003),24 and the SMBs factor

of Daniel, Mota, Rottke, and Santos (2020) (which is the SMB factor of Fama and French

(1993) without its unpriced component). While most posterior probabilities for these factors

are individually below 53%, the results in Sections 3.3 and 3.4 below stress the importance of

including stock market information to construct the BMA-SDF, i.e., the results suggest that

equity-based factors are jointly useful to price the cross-section of corporate bond returns

since, as we are about to show, the “true” latent SDF appears to be dense in the space of

observable factors.

Finally, as illustrated in Figure A.2 and Table A.3 of Appendix C, results are very stable

when considering duration-adjusted corporate bond returns.25

3.3 Which, and how many, factors are needed to price corporate
bonds?

The results in the previous sections highlight that in the joint zoo of equity and bond

factors only one variable—PEADB— should be included in an empirical SDF to price cor-

porate bond returns with a very high probability. As we show in Section 3.4 below, PEADB

23The long-term reversal factor is constructed as a long-short portfolio of stocks sorted on their cumulative
return accrued in the previous 60-13 months.

24This nontradable liquidity factor is computed as the average of individual-stock measures estimated as
the daily data residual predictability after controlling for the market factor

25The posterior probabilities are also very similar over the shorter sample (2002:09-2021:09) when using
the WRDS TRACE data reported in Figure IA.2 in the Internet Appendix.

22



Figure 3: Posterior factor probabilities and market prices of risk – bond factor zoo.

Posterior factor probabilities (top panel), E[γj |data], and the corresponding posterior market prices of risk
(bottom panel), E[λj |data], of 25 bond related factors described in Appendix B. Test assets include 50 bond
portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of the one-
month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor
inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 80% of
the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors. Sample period: 1986:01 to
2021:09 (T = 429).

alone is not sufficient to ensure good pricing performance, and several other factors should be

included in the model averaging. Before we turn to the cross-sectional pricing performance

of various models against the BMA-SDF, we first analyze the nature of the various factors,

and the dimensionality of the most likely SDF given the data.

Since the results over a wide range of prior values for the Sharpe ratio in Sections 3.1 and

3.2 appear very stable for factor selection, we now focus on just one value for this quantity,

as this tends to deliver the best out-of-sample performance (discussed in the next section): a

prior equal to 80% of the ex post maximum Sharpe ratio. Very similar results are obtained

for different values of the prior Sharpe ratio and are reported in Appendix D.

Figure 3 reports the posterior probabilities (top panel) and the posterior (annualized)
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market price of risk (bottom panel) of the bond specific factors in the estimation without

equity market factors. Note that out of the four factors with posterior probabilities higher

than their prior values (i.e., PEADB, YSP, INFLV and MKTB), two of them are nontradable

in nature and, importantly, all four command substantial market prices of risk. Furthermore,

the next nine factors with highest posterior probabilities are also all nontradable in nature,

and many of them command sizable market prices of risk. Moreover, the posterior median

number of nontradable factors in the “true” latent SDF is 5 (with a centered 95% coverage

between 2 and 9), and the posterior probability of zero nontradable factors in the SDF

is about 0.05%. Nevertheless, the risk prices of two of these nontradable factors (namely

INFLC and UNC), are effectively shrunk to zero. This is due to the fact that these are

likely weak factors in the cross-section of corporate bonds.26 The occurrence of weak factors,

which, in fact, is most common among the nontradable ones, causes identification failure and

invalidates canonical estimation approaches (e.g., GMM, MLE and two-pass regressions).

This is not an issue for our method, which restores inference, by design, by effectively

shrinking their market prices of risk towards zero. Finally, and possibly surprisingly, the

remaining 12 tradable factors, that have been specifically designed to price the cross-section

of corporate bond returns, are all less likely to be included in the SDF, with posterior

probabilities substantially lower than their prior values.

Overall, these findings suggest that i) the bond market specific tradable factors suggested

in the previous literature (with the exception of MKTB) are not likely sources of priced risk

and that ii) nontradable factors are—if not necessarily individually (with the exception of

YSP and INFLV)—at least jointly useful sources of information for pricing corporate bond

returns. This feature is further stressed by Figure 4 that reports the posterior dimension of

the SDF (top panel) in terms of observable bond specific factors to be included in it, and the

posterior distribution of the Sharpe ratios achievable with such an SDF (bottom panel). As

shown in the top panel, a substantial number of corporate bond factors (10 or 11 on average,

with a centered 95% coverage of 6 to 16 factors) are needed to construct a likely SDF out

of the corporate bond factor zoo, implying that the low dimensional models suggested in

26That is, their correlations with the test assets are small and have little cross-sectional dispersion,
especially in the case of INFLC. See, e.g., Gospodinov, Kan, and Robotti (2019), Kleibergen (2009), and
Bryzgalova, Huang, and Julliard (2023) for a formal definition for weak and level factors.
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Figure 4: Posterior SDF dimension and Sharpe ratio – bond factor zoo.

Posterior distributions of the number of factors to be included in the SDF (top panel) and of the SDF-implied
Sharpe ratio (bottom panel), computed using 25 bond related factors described in Appendix B. Test assets
include 50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed in
excess of the one-month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for
the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set
to 80% of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors. Sample period:
1986:01 to 2021:09 (T = 429).

the previous literature have very weak support in the data and are misspecified with high

probability. As shown in Figures IA.3 and IA.4 of the Internet Appendix, these findings are

robust to the particular value of the prior Sharpe ratio (albeit, as expected, less informative

when we impose an extreme degree of shrinkage).

Given that the previous corporate bond literature has exclusively focused on low dimen-

sional factor models, one might worry that our uniform prior for the model dimensionality

might be the reason behind the evidence in support of nontradable, and against tradable

(with the exception of PEADB and, to a lesser extent, MKTB), factors as likely drivers

of the SDF. Fortunately, our Bayesian approach allows to encode a strong prior belief in

support of sparse models. In particular, we recompute factor posterior probabilities using
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a Beta(3, 12) as prior for the individual factors inclusion. This tightly imposes a prior in

favour of sparsity: the a priori expected number of factors is 5, with a prior median of 3, and

vanishing probabilities for dense models, yielding a posterior distribution for the dimension

of the models that ranges from 1 to 7–9 factors (with the upper bound depending on the

prior Sharpe ratio value).

As shown in Figure A.8 of Appendix D, even when imposing sparsity, our results are

quite stable: nontradable factors are jointly important for pricing corporate bonds and only

PEADB, INFLV and YSP have posterior probabilities above the prior value (equal to 0.20

in this case), while the posterior probability of MKTB also exceeds its prior value when the

prior Sharpe ratio is set to 60% or less. This last result might seem somehow surprising given

the findings in Dickerson, Mueller, and Robotti (2023) that the CAPMB is not dominated

by the sparse factor models considered in their study. But this difference is due to three

simple reasons. First, our estimation method considers many additional sparse models that

were not in the previous literature, and many of these models (especially when including

PEADB, INFLV and YSP) have better pricing ability than the simple CAPMB model.

Second, Dickerson, Mueller, and Robotti (2023) use a method designed for tradable factors,

and apply it to the nontradable ones by first projecting them on the space of tradable factors

(not including PEADB). Hence, the ability of tradable factors to matter for pricing is limited

by the pricing ability of the tradable factors they are projected on—and, as shown above

and also in the next section, most corporate bond tradable factors have very limited pricing

ability. Third, as shown in Internet Appendix IA.2, an SDF with only MKTB as the sole

driving source of priced risk is not supported by the data. Nevertheless, our findings show

that MKTB carries relevant information for pricing corporate bonds, but simply not enough

for doing so in isolation.

Next, we turn to examining whether equity-based factors contain valuable information

to price corporate bonds. As shown in the top panel of Figure 5, equity-based factors are

overall more likely components of the true latent SDF than bond tradable factors (except

PEADB and MKTB). Hence, we would expect them to play a non-trivial role in the BMA-

SDF. Moreover, as shown in the bottom panel of Figure 5, they often demand sizable market

prices of risk in the corporate bond space (while some of them appear to be weak factors in the
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Figure 5: Posterior factor probabilities and market prices of risk – bond and equity factor
zoo.

Posterior factor probabilities (top panel), E[γj |data], and the corresponding posterior market prices of risk
(bottom panel), E[λj |data], of 49 bond and equity factors described in Appendix B. Test assets include 50
bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of the
one-month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor
inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 80% of
the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors. Sample period: 1986:01 to
2021:09 (T = 429).

space of corporate bonds, and their risk prices are effectively shrunk to zero). Furthermore,

this outperformance of equity factors relative to the bond specific tradable ones holds true

for different values of the Sharpe ratio prior (Figure IA.5 of the Internet Appendix), and

even when we impose sparcity of the SDF (Figure A.9 of Appendix D).

The top panel of Figure 6 also reveals that the posterior dimension of the SDF becomes

much larger once we allow for the potential inclusion of equity-based factors: the posterior

median of the number of factors in the SDF is now 23, and the centered 95% coverage area

ranges from 16 to 29 factors. This implies that the low-dimensional factor models considered

in the previous literature are misspecified with extremely high probability. Note that this

finding, as shown in Figure IA.3 of the Internet Appendix, is stable for all values of prior
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Figure 6: Posterior SDF dimension and Sharpe Ratio – bond and equity factor zoo.

Posterior distributions of the number of factors to be included in the SDF (top panel) and of the SDF-implied
Sharpe ratio (bottom panel), computed using the 49 bond and equity factors described in Appendix B. Test
assets include 50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed
in excess of the one-month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution
for the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio
is set to 80% of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors. Sample
period: 1986:01 to 2021:09 (T = 429).

Sharpe ratio. Furthermore, the posterior median number of equity-based factors in the SDF

is 12 (with a centered 95% coverage between 7 and 16), and the posterior probability of no

such factor in the SDF is of the order of 10−9. That is, equity market information is salient

for pricing corporate bond returns.

Interestingly, as shown in the bottom panel of Figure 6, once we allow the SDF to

potentially load on equity factors, the ex post maximum Sharpe ratio achievable in the data

with the 64 bond portfolios and traded factors is no more unrealistically large relative to the

posterior distribution of the SDF-implied Sharpe ratio. This is in sharp contrast with what

we observe in the bottom panel of Figure 4, where the ex post maximum Sharpe ratio of

the data has zero probability to be generated by an SDF that comprises only bond specific
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Figure 7: BMA-SDF, economic cycles, and PEADB – bond and equity factor zoo.

Smoothed time series of the posterior mean of the BMA-SDF (left scale), computed using 49 bond and
equity factors described in Appendix B, and of the smoothed PEAD factor annualized returns (right scale).
The blue shaded areas represent NBER-dated recessions, and the red dotted vertical lines correspond to the
major stock market crashes identified in Mishkin and White (2002) plus the 2008 and 2020 contractions. Test
assets include 50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed
in excess of the one-month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution
for the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio
is set to 80% of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors. Sample
period: 1986:01 to 2021:09 (T = 429).

factors. Once again, this indicates that the bond factor zoo needs complementing with

factors from the equity literature to produce a likely SDF for the corporate bond market.

Notably, as shown in Figure A.3 of Appendix C, the importance of nontradable factors,

and the poor performance of tradable ones (except PEADB and, to a much lower extent,

MKTB) is confirmed when focusing on duration-adjusted corporate bond returns. Further-

more, even when considering these test assets that are meant to isolate and focus solely on

the credit risk component of bond returns, the SDF appears to be dense in the space of

observable factors (as shown in Figure A.4 of Appendix C). That is, even duration-adjusted

corporate bond returns are extremely unlikely to have been generated by a low dimensional
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SDF as the ones considered in the previous literature.

The important contribution of nontradable and equity-based factors to the BMA-SDF can

also be elicited from Figure 7 that plots the (posterior mean of the) BMA-SDF and the return

series of the PEADB factor. The BMA-SDF has a clear business cycle pattern: it increases

during expansions and peaks right before recessions and around the time of financial market

crashes. Hence, our approach yields an estimated SDF that behaves as one would expect

from the intertemporal marginal rate of substitution of an agent that prices asset returns

and is exposed to the risk arising from the general economic conditions. Furthermore, its

close links to business cycles and market crashes is in line with the SDFs estimated in the

literature using very different test assets and econometric methods (see, e.g., Ghosh, Julliard,

and Taylor 2016). The PEADB return series instead, that is (by construction, given its high

posterior probability of being part of the SDF) highly correlated with the BMA-SDF (the

posterior mean correlation is about −0.51), does not have such a clear business cycle pattern

and has a weaker association with market-wide crashes. That is, the additional factors

included in the BMA-SDF are important in determining these economically salient features

of its time series behaviour.

3.4 Cross-sectional asset pricing

We now focus on the cross-sectional asset pricing performance of our BMA estimates

of the Stochastic Discount Factor (BMA-SDF), constructed with and without the inclusion

of equity-based factors, both in- and out-of-sample, and compare it with both traditional

popular reduced-form factor models for corporate bonds, and low dimensional models con-

structed by selecting only the most likely factors (as suggested, e.g., in Barillas and Shanken

2018). Specifically, we consider two “top factor” models using (i) bond factors and (ii) a

combination of bond and equity factors based on the analysis in Sections 3.1 and 3.2. The

bond model includes PEAD, MKTB, INFLV and YSP, or the 4 factors with a posterior

probabibility above 50% for a wide range or prior Sharpe ratios. Allowing for all factors, we

add to the above LTREV, LIQNT, SMB and SMBs, who all exhibit posterior probabilities

for inclusion in the SDF above 50%, yielding an 8-factor model. Table 3 reports root mean

squared pricing error (RMSE), mean absolute pricing errors (MAPE), and OLS and GLS
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cross-sectional R2 for a variety of models and test assets.27 The test assets for the in-sample

tests are the 50 bond portfolios and the 14 traded bond factors, whereas the cross-sectional

out-of sample tests are conducted using a different set of 77 bond portfolios.28 In the cross-

sectional out-of-sample tests, the SDFs are first estimated using the baseline in-sample test

assets and then used to price (without additional parameter estimation) the out-of-sample

test assets.

Panel A reports the statistics for the BMA-SDF constructed using only the 25 bond

factors (for a total of 33.6 million models) whereas Panel B contains the results for the

BMA-SDF based on 49 bond and equity factors (for a total of about 563 trillion models

included in the model averaging). For a benchmark comparison, in Panel C we consider the

bond CAPM (CAPMB), the equity CAPM, and the original Fama and French (1993) five-

factor model (FF5), which includes the market return (MKTS), a proxy for the size effect

(SMB), a proxy for the book-to-market anomaly (HML), a proxy for the default risk of bonds

(DEF), and the slope of the term structure of Government bonds (TERM). In addition, we

include a single-factor model with PEADB (which has the highest posterior probability of

being included in the SDF) and the two “top factor” models described above. Results for the

(GLS) BMA-SDFs are reported for a range of prior values of the Sharpe ratio achievable in

the economy. All the benchmark model SDFs are estimated via a GLS version of the GMM

(see, e.g., Cochrane (2005, pp. 256–258)). Note that for the cross-sectional out-of-sample

pricing we do not refit the BMA-SDF, nor the other benchmark models, to the new data.

Instead, we use the estimated parameters from the respective in-sample pricing exercises.

The results for the BMA-SDF based on bond factors only are presented in Panel A

of Table 3. Over the range of Sharpe ratio priors, it is clear that a relatively high prior

Sharpe ratio produces the best results. Both in- and out-of-sample, the BMA-SDF strongly

outperforms all the low dimensional models proposed in the previous literature (Panel C),

27All data is normalised by the standard deviations, hence pricing errors are expressed in (annualised)

Sharpe ratio units. The measures of fit are computed as: RMSE ≡
√

1
N
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28The out-of-sample portfolios include decile-sorted portfolios on bond historical value-at-risk (95%), du-
ration, bond value, bond book-to-market, long-term reversals, momentum and the 17 Fama French industry
portfolios discussed in Section 1.
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Table 3: Cross-sectional asset pricing.

In-sample Out-of-sample

RMSE MAPE R2
OLS R2

GLS RMSE MAPE R2
OLS R2

GLS

Panel A: BMA-SDF with 25 bond factors (33.6 mn models)

prior SR = 20% 0.192 0.144 0.240 0.125 0.127 0.091 0.088 0.035
prior SR = 40% 0.163 0.127 0.450 0.194 0.119 0.087 0.197 0.060
prior SR = 60% 0.144 0.112 0.574 0.252 0.113 0.085 0.272 0.075
prior SR = 80% 0.130 0.100 0.651 0.308 0.108 0.083 0.336 0.092

Panel B: BMA-SDF with 49 bond and stock factors (563 tn models)

prior SR = 20% 0.198 0.147 0.195 0.117 0.128 0.092 0.068 0.031
prior SR = 40% 0.171 0.132 0.399 0.187 0.121 0.087 0.176 0.062
prior SR = 60% 0.150 0.117 0.539 0.261 0.114 0.083 0.272 0.086
prior SR = 80% 0.132 0.102 0.641 0.348 0.106 0.080 0.368 0.112

Panel C: Benchmark models and most likely factors

CAPMB 0.176 0.115 0.365 0.137 0.125 0.094 0.113 0.056
CAPM 0.261 0.207 −0.401 0.032 0.156 0.110 −0.368 −0.023
FF5 0.205 0.147 0.138 0.180 0.142 0.106 −0.146 0.011
PEADB 0.255 0.173 −0.337 0.156 0.118 0.087 0.217 −0.027
Top factors bond 0.135 0.095 0.627 0.490 0.122 0.104 0.154 0.026
Top factors all 0.136 0.099 0.618 0.574 0.111 0.091 0.307 0.097

In-sample and cross-sectional out-of-sample pricing performance of BMA-SDF, notable factor models, and
factors with a posterior probability greater than 50%. We use GMM-GLS to estimate factor risk prices for
CAPMB, CAPM, and the and Fama and French (1992, 1993) model, which includes the MKTS, SMB, HML,
DEF and TERM factors, and a single-factor model with PEADB. The ‘Top factors bond’ model includes
PEADB, MKTB, INFLV and YSP. The ‘Top factors all’ model includes additionally LTREV, LIQNT, SMB
and SMBs. For the BMA-SDF, we report results for a range of prior Sharpe ratio values that are set as
20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors.
In-sample (IS) test assets include 50 bond portfolios sorted on credit spreads, size, rating and maturity and
the 14 traded bond factors (N = 64). Out-of-sample (OS) test assets assets include decile-sorted portfolios
on bond historical value-at-risk (95%), duration, bond value, bond book-to-market, long-term reversals,
momentum and the 17 Fama French industry portfolios (N = 77). In cross-sectional OS tests, models
are first estimated using the baseline IS test assets and then used to price (with no additional parameter
estimation) the OS assets. All data is standardized, that is, pricing errors are in Sharpe ratio units.

except when we impose an extreme degree of prior shrinkage (a prior Sharpe ratio equal to

20% of the ex post maximum Sharpe ratio of the test assets, i.e. a prior for the Sharpe

achievable with all the factors of only 0.6 per annum), in which case CAPMB has marginally

better in-sample, and similar out-of-sample, pricing ability.

Interestingly, the most likely factor models (bottom two rows of Panel C) also strongly

outperform the benchmark models both in- and out-of-sample, but do not perform as well as

the BMA-SDF out-of-sample. Furthermore, the top factor model that includes both equity

and bond factors performs significantly better out-of-sample than the specification with
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only bond factors, and only this specification prices assets out of sample similarly to the

bond-factors-only BMA-SDF with a prior Sharpe ratio of 80%. Note that PEADB features

prominently in these two models, as well as, given its high posterior probability, in the

BMA-SDF. Nevertheless, PEADB alone (forth row of Panel C) is not enough to construct

an SDF that prices assets accurately in- or out-of-sample, consistent with our evidence in

the previous section that dense models are strongly preferred by the data.

In Panel B, we use all 49 of our bond (25) and equity (24) factors to construct the

BMA-SDF. The in-sample asset pricing performance of the BMA-SDF remains roughly the

same for the MSE, MAPE and R2
OLS and marginally improves for the R2

GLS. The two top

factor models again outperform the BMA-SDF in terms of R2
GLS in-sample (yet not in terms

of R2 and RMSE). But interestingly, out-of-sample the BMA-SDF (with moderate to low

shrinkage) outperforms these two specifications.29

To further illustrate the stability of the cross-sectional out-of-sample pricing of the BMA-

SDF, we use the 7 component portfolios sets (decile portfolios sorted on bond historical

value-at-risk, duration, bond value, bond book-to-market, momentum, long-term reversals

and the 17 Fama French industry portfolios), that comprise our 77 out-of-sample test assets,

and construct 27 − 1 = 127 possible combinations of these asset sorts (containing between

1 and 7 sets). We then repeat the cross-sectional out-of-sample asset pricing exercise using

each of these 127 combinations and report the average values and standard deviations (across

samples) of RMSE, MAPE, R2
OLS and R2

GLS in Table 4.

Two insights are readily apparent from the average asset pricing metrics from pricing

the 127 portfolio combinations. First, for all but heavy levels of shrinkage, the BMA-SDF

is superior compared to the benchmark models, with much lower standard deviations (in

square brackets). This holds both for the BMA-SDF based on bond factors only as well

as for the BMA-SDF that allows for all factors. That is, not only does the BMA-SDF

have better OSS pricing ability for the “average” cross-section, but also has a more stable

performance across all the possible OSS cross-sections. For instance, the CAPMB (CAPM),

generates an average R2
OLS of 0.09 (−0.35) with 0.24 (0.24) standard deviation, whereas

29We report similar asset pricing results for the shortened WRDS TRACE sample over the 2002:09–
2021:09 sample period in Table IA.I of the Internet Appendix.
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Table 4: Out-of-sample cross-sectional asset pricing with 127 cross-sections.

RMSE MAPE R2
OLS R2

GLS

Panel A: BMA-SDF with 25 bond factors (33.6 mn models)

prior SR = 20% 0.122 0.091 0.075 0.109
[0.021] [0.015] [0.085] [0.075]

prior SR = 40% 0.116 0.086 0.170 0.159
[0.020] [0.015] [0.125] [0.098]

prior SR = 60% 0.111 0.084 0.238 0.180
[0.018] [0.014] [0.123] [0.105]

prior SR = 80% 0.106 0.082 0.299 0.202
[0.015] [0.012] [0.120] [0.110]

Panel B: BMA-SDF with 49 bond and stock factors (563 tn models)

prior SR = 20% 0.124 0.092 0.059 0.098
[0.020] [0.015] [0.072] [0.068]

prior SR = 40% 0.117 0.087 0.151 0.158
[0.020] [0.015] [0.119] [0.093]

prior SR = 60% 0.110 0.083 0.238 0.193
[0.018] [0.014] [0.124] [0.101]

prior SR = 80% 0.103 0.080 0.330 0.229
[0.015] [0.011] [0.120] [0.107]

Panel C: Benchmark models and most likely factors

CAPMB 0.121 0.091 0.090 0.188
[0.025] [0.022] [0.242] [0.131]

CAPM 0.148 0.110 −0.345 0.035
[0.031] [0.024] [0.244] [0.109]

FF5 0.137 0.104 −0.225 0.062
[0.025] [0.020] [0.476] [0.108]

PEADB 0.114 0.086 0.159 −0.085
[0.014] [0.011] [0.242] [0.070]

Top factors bond 0.120 0.102 0.040 0.121
[0.013] [0.013] [0.389] [0.160]

Top factors all 0.109 0.090 0.193 0.234
[0.013] [0.012] [0.338] [0.169]

Average out-of-sample asset pricing performance metrics, and associated standard deviations across cross-
sections, of the BMA-SDF, notable factor models, and factors with a posterior probability greater than 50%.
The metrics are averaged over 127 possible combinations of the 7 sets of out-of-sample test assets. The out-
of-sample (OS) portfolios which form the combinations, include decile-sorted portfolios on bond historical
value-at-risk (95%), duration, bond value, bond book-to-market, long-term reversals, momentum and the
Fama French 17 industry portfolios. We use GMM-GLS to estimate factor prices of risk for the CAPMB
(bond CAPMB), the equity CAPM, the original FF5 model of Fama and French (1992) and Fama and French
(1993), which includes the MKTS, SMB, HML and the DEF and TERM factors, and a single-factor model
with PEADB. The ‘Top factors bond’ includes PEADB, MKTB, INFLV and YSP. The ‘Top factors all’
includes the above as well as LTREV, LIQNT, SMB and SMBs. For the BMA-SDF, we report results for a
range prior Sharpe ratio values that are set as 20%, 40%, 60% and 80% of the ex post maximum Sharpe ratio
of the 64 bond portfolios and traded factors. In the cross-sectional OS tests, the models are first estimated
using the baseline IS test assets and then used to price (without additional parameters estimation), the OS
assets. All data is standardized, that is, pricing errors are in Sharpe ratio units.
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Table 5: Cross-sectional asset pricing – duration adjusted returns

In-sample Out-of-sample

RMSE MAPE R2
OLS R2

GLS RMSE MAPE R2
OLS R2

GLS

Panel A: BMA-SDF with 25 bond factors (33.6 mn models)

prior SR = 20% 0.137 0.085 0.142 0.118 0.091 0.066 0.129 0.006
prior SR = 40% 0.118 0.083 0.362 0.205 0.089 0.066 0.165 0.011
prior SR = 60% 0.108 0.083 0.467 0.271 0.092 0.068 0.114 0.005
prior SR = 80% 0.103 0.082 0.513 0.322 0.093 0.069 0.089 0.009

Panel B: BMA-SDF with 49 bond and stock factors (563 tn models)

prior SR = 20% 0.140 0.085 0.110 0.108 0.092 0.066 0.114 0.006
prior SR = 40% 0.122 0.081 0.322 0.189 0.088 0.065 0.177 0.017
prior SR = 60% 0.109 0.081 0.463 0.266 0.089 0.067 0.156 0.022
prior SR = 80% 0.100 0.078 0.542 0.338 0.090 0.067 0.141 0.038

Panel C: Benchmark models and most likely factors

CAPMB 0.170 0.104 −0.318 0.074 0.098 0.072 −0.006 −0.002
CAPM 0.160 0.098 −0.162 0.066 0.099 0.074 −0.042 −0.015
FF5 0.156 0.102 −0.114 0.132 0.104 0.075 −0.145 −0.037
PEADB 0.186 0.134 −0.580 0.153 0.098 0.072 −0.005 −0.086
Top factors bond 0.157 0.122 −0.125 0.458 0.116 0.097 −0.433 −0.152
Top factors all 0.135 0.110 0.165 0.511 0.131 0.106 −0.804 −0.083

In-sample and cross-sectional out-of-sample pricing performance of BMA-SDF, notable factor models, and
factors with a posterior probability greater than 50%. Test assets and traded bond factors are computed
with returns in excess of the duration-matched U.S. Treasury Bond rate of return. We use GMM-GLS to
estimate factor risk prices for CAPMB, CAPM, and the and Fama and French (1992, 1993) model, which
includes the MKTS, SMB, HML, DEF and TERM factors, and a single-factor model with PEADB. ‘Top
factors bond’ includes PEADB, MKTB, INFLV, YSP and UNCf. ‘Top factors all’ includes the above as
well as LIQNT. For the BMA-SDF, we report results for a range prior Sharpe ratio values that are set as
20%, 40%, 60% and 80% of the ex-post maximum Sharpe ratio of the 64 bond portfolios and traded factors.
In-sample (IS) test assets include 50 bond portfolios sorted on credit spreads, size, rating and maturity and
the 14 traded bond factors (N = 64). Out-of-sample (OS) test assets include decile-sorted portfolios on bond
historical value-at-risk (95%), duration, bond value, bond book-to-market, long-term reversals, momentum
and the 17 Fama French industry portfolios (N = 77). In the cross-sectional OS tests, models are first
estimated using the baseline IS test assets and then used to price (with no additional parameter estimation)
the OS assets. All data is standardized, that is, pricing errors are in Sharpe ratio units.
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the BMA-SDF (with a prior Sharpe ratio at 80%) with and without stock-related factors

generates an average R2
OLS of 0.33 and 0.30, respectively, with a standard deviation of only

0.12. Similarly, the BMA-SDF achieves superior average performance with a lower standard

error across the other asset pricing evaluation metrics. Second, as we ease the shrinkage

constraint, the inclusion of equity-related factors improves the asset pricing performance of

the BMA-SDF across all metrics considered in Table 4. For an 80% Sharpe ratio prior, the

average R2
OLS (R2

GLS) of the BMA-SDF increases from 0.299 (0.202) to 0.330 (0.229). At

the same time, the average RMSE (MAPE) decreases from 0.106 (0.082) to 0.103 (0.080),

respectively. Similarly, the R2
OLS (R2

GLS) of the top factor model increases from 0.040 (0.121)

to 0.193 (0.234) when including the equity factors.

To zoom in on the pricing of the credit risk component of corporate bond returns, we

repeat our in- and out-of-sample cross-sectional exercises using duration-adjusted returns as

advocated by van Binsbergen, Nozawa, and Schwert (2023). Results are reported in Table 5.

Clearly, the BMA-SDFs, with or without equity factors, strongly outperform the benchmark

models in- and out-of-sample for any value of the prior Sharpe ratio. Furthermore, the

BMA-SDF, in particular when constructed to include both equity and bond factors, strongly

outperforms the most likely factor models both in- and out-of-sample. Furthermore, as shown

in Table A.4 of Appendix C, the superior cross-sectional OSS performance of the BMA-SDF

is very stable across different sets of duration-adjusted returns, and the best performance is

achievable using both equity and bond factors for its construction.

As an additional robustness check, we repeat our analysis using the publicly available

WRDS TRACE database spanning the sample period 2002:09 to 2021:09.30 Despite loosing

more than 16 years of monthly observations compared to our baseline data set, results are

quite stable both in terms of most likely components to be included in the SDF and in terms

of superior asset pricing performance of the BMA-SDF relative to benchmark models (see

Figure IA.2 and Table IA.I of the Internet Appendix).

30A detailed description of the data construction is reported in Internet Appendix IA.1.
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4 Conclusion

Using a flexible and powerful Bayesian method to study linear factor models, we parse

the bond factor zoo. We take a comprehensive view of linear stochastic discount factors

(SDFs) to price an extensive cross-section of corporate bond portfolios, using information

from the bond as well as the equity market literature.

We find that the majority of tradable factors designed to price corporate bonds are

unlikely sources of priced risk, and that only one factor, capturing the post-earnings an-

nouncement drift in corporate bonds, which has not been utilized in prior asset pricing mod-

els, should be included in any stochastic discount factor (SDF) with very high probability.

Furthermore, we find that nontradable factors capturing inflation volatility risk (Kang and

Pflueger (2015)) and the term structure yield spread (Koijen, Lustig, and Van Nieuwerburgh

(2017)), as well as the return on a broad based bond market index, are likely components of

the SDF. Moreover, our results imply that the low dimensional models suggested in the pre-

vious literature to price the cross-section of corporate bond returns have very weak support

in the data, are misspecified with high probability, and the prices of risk of several factors

are only weakly identified in the cross-section of corporate bond returns, hence invalidating

canonical inference (but not, importantly, the estimation method we use).

Including factors from the equity factor zoo increases the explanatory power for the

cross-section of corporate bond returns, especially when using duration-adjusted test assets.

Allowing the SDF to load on equity factors, the ex post maximum Sharpe ratio achiev-

able in the data is no more unrealistically large relative to the posterior distribution of the

SDF-implied Sharpe ratio. At the same time, the posterior mean of the number of factors

in the SDF is large with 22 to 23 factors, and sparse models have extremely small poste-

rior probabilities, implying that any low-dimensional factor model is extremely likely to be

misspecified.

A Bayesian model averaging-stochastic discount factor (BMA-SDF) including bond and

equity factors prices bonds better than all existing models, both in- and out-of-sample, and

has a clear business cycle pattern, increasing during expansions and peaking right before

recessions and around the time of financial market crashes. Hence, our approach yields an
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estimated SDF that behaves as one would expect from the intertemporal marginal rate of

substitution of an agent that prices asset returns and is exposed to the risks arising from

general economic conditions.
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Appendix

A Posterior sampling

The posterior of the time series parameters follows the the canonical Normal-inverse-

Wishart distribution (see, e.g., Bauwens, Lubrano, and Richard 1999) given by

µY |ΣY ,Y ∼ N (µ̂Y , ΣY /T ) , (A.7)

ΣY |Y ∼ W -1

(
T − 1,

T∑
t=1

(Yt − µ̂Y ) (Yt − µ̂Y )
⊤

)
, (A.8)

where µ̂Y ≡ 1
T

∑T
t=1 Yt, W -1 is the inverse-Wishart distribution, Y ≡ {Yt}Tt=1, and note that

the covariance matrix of factors and test assets, Cf , is contained within ΣY .

Define D as a diagonal matrix with elements c, (r(γ1)ψ1)
−1 , . . . , (r(γK)ψK)

−1. Hence,

in matrix notation, the prior for λ in equation (3) is λ|σ2,γ ∼ N (0, σ2D−1). It then follows

that, given our prior formulations, the posterior distributions of the parameters in the cross-

sectional layer (λ,γ,ω, σ2), conditional on the draws of µR, ΣR, and C from the time series

layer, are (see Bryzgalova, Huang, and Julliard 2023 for a formal derivation):

λ|data, σ2,γ,ω ∼ N
(
λ̂, σ̂2(λ̂)

)
, (A.9)

p(γj = 1|data,λ,ω, σ2,γ−j)

p(γj = 0|data,λ,ω, σ2,γ−j)
=

ωj

1− ωj

p(λj|γj = 1, σ2)

p(λj|γj = 0, σ2)
, (A.10)

ωj|data,λ,γ, σ2 ∼ Beta
(
γj + aω, 1− γj + bω

)
, (A.11)

σ2|data,ω,λ,γ ∼ IG
(
N +K + 1

2
,
(µR −Cλ)⊤Σ−1

R (µR −Cλ) + λ⊤Dλ

2

)
, (A.12)

where λ̂ = (C⊤Σ−1
R C +D)−1C⊤Σ−1

R µR, σ̂
2(λ̂) = σ2(C⊤Σ−1

R C +D)−1.

Hence, posterior sampling is achieved with a Gibbs sampler that draws sequentially

the time series layer parameters (µR, ΣR, and C) from equations (A.7)-(A.8), and then,

conditional on these realizations, draws sequentially from equations (A.9)–(A.12).
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B The factor zoo

We present the 49 bond and equity factors used in Table A.1 including a detailed de-

scription of their construction, associated reference, and data source.

Table A.1: List of factors for cross-sectional asset pricing. This table presents the list of tradable
bond, equity and nontradable factors used in the main paper. For each of the factors, we present their
identification index (Factor ID), a description of the factor construction, and the source of the data for
downloading and/or constructing the time series.

Factor ID Factor name and description Reference Source

Panel A: Traded corporate bond factors

CRF Credit risk factor. Equally-weighted average return
on two ‘credit portfolios’: CRFV aR, and CRFREV .
CRFV aR is the average return difference between the
lowest-rating (i.e., highest credit risk) portfolio and
the highest-rating (i.e., lowest credit risk) portfolio
across the VaR95 portfolios. CRFREV is the aver-
age return difference between the lowest-rating port-
folio and the highest-rating portfolio across quintiles
sorted on bond short-term reversal.

Bai, Bali, and Wen
(2019)

Open Source
Bond Asset
Pricing

CRY Bond carry factor. Independent sort (5× 5) to form
25 portfolios according to ratings and bond credit
spreads (CS). For each rating quintile, calculate the
weighted average return difference between the high-
est CS quintile and the lowest CS quintile. CRY is
computed as the average long-short portfolio return
across all rating quintiles.

Houweling and
Van Zundert (2017)

Open Source
Bond Asset
Pricing

DEF Bond default risk factor. The difference between the
return on the market portfolio of long-term corpo-
rate bond returns (the Composite portfolio on the
corporate bond module of Ibbotson Associates) and
the long-term government bond return.

Fama and French
(1992)

Amit Goyal web-
site

DRF Downside risk factor. Independent sort (5 × 5) to
form 25 portfolios according to ratings and 95%
value-at-risk (VaR95). For each rating quintile, cal-
culate the weighted average return difference be-
tween the highest VaR5 quintile and the lowest VaR5
quintile. DRF is computed as the average long-short
portfolio return across all rating quintiles.

Bai, Bali, and Wen
(2019)

Open Source
Bond Asset
Pricing

DUR Bond duration factor. Independent sort (5 × 5) to
form 25 portfolios according to ratings and bond du-
ration (DURB). For each rating quintile, calculate
the weighted average return difference between the
highest DURB quintile and the lowest DURB quin-
tile. DUR is computed as the average long-short
portfolio return across all rating quintiles.

Dang, Hollstein, and
Prokopczuk (2023)

Open Source
Bond Asset
Pricing

HMLB Bond book-to-market factor. Independent sort (2 ×
3) to form 6 portfolios according to bond size and
bond book-to-market (BBM), defined as bond prin-
cipal value scaled by market value. For each size
portfolio, calculate the weighted average return dif-
ference between the lowest BBM tercile and the high-
est BBM tercile. HMLB is computed as the average
long-short portfolio return across the two size port-
folios.

Bartram, Grinblatt,
and Nozawa (2020)

Open Source
Bond Asset
Pricing
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LTREVB Bond long-term reversal factor. Dependent sort
(3×3×3) to form 27 portfolios according to ratings,
maturity, and the 48-13 cumulative previous bond
return (LTREVB). For each rating quintile, the fac-
tor is computed as the average return differential be-
tween the portfolio with the lowest LTREVB and
the one with the highest LTREVB within the rat-
ing and maturity portfolios. LTREVB is computed
as the average long-short portfolio return across the
nine rating-maturity terciles.

Bali, Subrahmanyam,
and Wen (2021)

Open Source
Bond Asset
Pricing

MKTB Corporate Bond Market excess return. Constructed
using bond returns in excess of the one-month risk-
free rate of return.

Dickerson, Mueller,
and Robotti (2023)

Open Source
Bond Asset
Pricing

MKTBD Corporate Bond Market duration adjusted return.
Constructed using bond returns in excess of their
duration-matched U.S. Treasury bond rate of return.

van Binsbergen,
Nozawa, and Schwert
(2023)

Open Source
Bond Asset
Pricing

MOMB Bond momentum factor. Independent sort (5 × 5)
to form 25 portfolios according to ratings and the
12-2 cumulative previous bond return (MOM). For
each rating quintile, calculate the weighted average
return difference between the highest MOM quintile
and the lowest MOM quintile. MOMB is computed
as the average long-short portfolio return across all
rating quintiles.

Bali, Subrahmanyam,
and Wen (2017)

Open Source
Bond Asset
Pricing

PEADB Bond earnings announcement drift factor. Indepen-
dent sort (2 × 3) to form 6 portfolios according to
market equity and earnings surprises (CAR), com-
puted according to Chan, Jegadeesh, and Lakon-
ishok (1996). For each firm size portfolio, calculate
the weighted average return difference between the
highest CAR terciles and the lowest CAR tercile.
PEADB is computed as the average long-short port-
folio return across the two firm size portfolios.

Nozawa, Qiu, and
Xiong (2023)

Open Source
Bond Asset
Pricing

STREVB Bond short-term reversal factor. Independent sort
(5 × 5) to form 25 portfolios according to ratings
and the prior month’s bond return (REV). For each
rating quintile, calculate the weighted average return
difference between the lowest REV quintile and the
highest REV quintile. STREVB is computed as the
average long-short portfolio return across all rating
quintiles.

Bali, Subrahmanyam,
and Wen (2021)

Open Source
Bond Asset
Pricing

TERM Bond term structure risk factor. The difference be-
tween the monthly long-term government bond re-
turn and the one-month T-Bill rate of return.

Fama and French
(1992)

Amit Goyal web-
site

VAL Bond value factor. Independent sort (2× 3) to form
6 portfolios according to bond size and bond value
(VALB). VALB is computed via cross-sectional re-
gressions of credit spreads on ratings, maturity, and
the 3-month change in credit spread. The percentage
difference between the actual credit spread and the
fitted (’fair’) credit spread for each bond is the VALB

characteristic. For each size portfolio, calculate the
weighted average return difference between the high-
est VALB tercile and the lowest VALB tercile. VAL
is computed as the average long-short portfolio re-
turn across the two size portfolios.

Houweling and
Van Zundert (2017)

Open Source
Bond Asset
Pricing

Panel B: Nontraded corporate bond and equity factors

CPTL Intermediary capital nontraded risk factor. Con-
structed using AR(1) innovations to the market-
based capital ratio of primary dealers, scaled by the
lagged capital ratio.

He, Kelly, and Manela
(2017)

Zhiguo He web-
site

EPU Economic Policy Uncertainty. First difference in the
economic policy uncertainty index.

Dang, Hollstein, and
Prokopczuk (2023)

FRED

EPUT Economic Tax Policy Uncertainty. First difference in
the economic tax policy uncertainty index.

Dang, Hollstein, and
Prokopczuk (2023)

FRED

INFLC Shocks to core inflation. Unexpected core infla-
tion component captured by an ARMA(1,1) model.
Monthly core inflation is calculated as the percentage
change in the seasonally adjusted Consumer Price In-
dex for All Urban Consumers: All Items Less Food
and Energy which is lagged by one-month to account
for the inflation data release lag.

Fang, Liu, and Rous-
sanov (2022)

FRED
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INFLV Inflation volatility. Computed as the 6-month
volatility of the unexpected inflation component cap-
tured by an ARMA(1,1) model. Monthly inflation is
calculated as the percentage change in the season-
ally adjusted Consumer Price Index for All Urban
Consumers (CPI) which is lagged by one-month to
account for the inflation data release lag.

Kang and Pflueger
(2015) and Ceballos
(2022)

FRED

LVL Level term structure factor. Constructed as the
first principal component of the one- through 30-
year CRSP Fixed Term Indices U.S. Treasury Bond
yields.

Koijen, Lustig, and
Van Nieuwerburgh
(2017)

CRSP Indices

LIQNT Liquidity factor, computed as the average of
individual-stock measures estimated with daily data
(residual predictability, controlling for the market
factor)

Pástor and Stambaugh
(2003)

Robert Stam-
baugh website

UNC First difference in the Macroeconomic uncertainty in-
dex, which is lagged by one-month to align the fore-
cast to the returns observed in month t.

Koijen, Lustig, and
Van Nieuwerburgh
(2017)

Sydney Ludvig-
son website

UNCf First difference in the Financial economic uncer-
tainty index, which is lagged by one-month to align
the forecast to the returns observed in month t.

Koijen, Lustig, and
Van Nieuwerburgh
(2017)

Sydney Ludvig-
son website

UNCr First difference in the Real economic uncertainty in-
dex, which is lagged by one-month to align the fore-
cast to the returns observed in month t.

Koijen, Lustig, and
Van Nieuwerburgh
(2017)

Sydney Ludvig-
son website

VIX First difference in the CBOE VIX. Chung, Wang, and Wu
(2019)

FRED

YSP Slope term structure factor. Constructed as the dif-
ference in the five and one-year U.S. Treasury Bond
yields.

Koijen, Lustig, and
Van Nieuwerburgh
(2017)

CRSP Indices

Panel C: Traded equity factors

BAB Betting-against-beta factor, constructed as a portfo-
lio that holds low-beta assets, leveraged to a beta of
1, and that shorts high-beta assets, de-leveraged to
a beta of 1

Frazzini and Pedersen
(2014)

AQR data
library

CMA Investment factor, constructed as a long-short port-
folio of stocks sorted by their investment activity

Fama and French
(2015)

Ken French web-
site

CMAs CMA with a hedged unpriced component Daniel, Mota, Rottke,
and Santos (2020)

Kent Daniel
website

CPTLT The value-weighted equity return for the New York
Fed’s primary dealer sector not including new equity
issuance

He, Kelly, and Manela
(2017)

Zhiguo He web-
site

FIN Long-term behavioral factor, predominantly captur-
ing the impact of share issuance and correction

Daniel, Hirshleifer, and
Sun (2020)

Kent Daniel
website

HML Value factor, constructed as a long-short portfolio of
stocks sorted by their book-to-market ratio

Fama and French
(1992)

Ken French web-
site

HML DEV A version of the HML factor that relies on the current
price level to sort the stocks into long and short legs

Asness and Frazzini
(2013)

AQR data
library

HMLs HML with a hedged unpriced component Daniel, Mota, Rottke,
and Santos (2020)

Kent Daniel
website

LIQ Liquidity factor, constructed as a long-short portfolio
of stocks sorted by their exposure to LIQ NT

Pástor and Stambaugh
(2003)

Robert Stam-
baugh website

LTREV Long-term reversal factor, constructed as a long-
short portfolio of stocks sorted by their cumulative
return accrued in the previous 60-13 months

Jegadeesh and Titman
(2001)

Ken French web-
site

MKTS Market excess return Sharpe (1964) and
Lintner (1965)

Ken French web-
site

MKTSs Market factor with a hedged unpriced component Daniel, Mota, Rottke,
and Santos (2020)

Kent Daniel
website

MOMS Momentum factor, constructed as a long-short port-
folio of stocks sorted by their 12-2 cumulative previ-
ous return

Carhart (1997), Je-
gadeesh and Titman
(1993)

Ken French web-
site

PEAD Short-term behavioral factor, reflecting post-
earnings announcement drift

Daniel, Hirshleifer, and
Sun (2020)

Kent Daniel
website

QMJ Quality-minus-junk factor, constructed as a long-
short portfolio of stocks sorted by the combination
of their safety, profitability, growth, and the quality
of management practices

Asness, Frazzini, and
Pedersen (2019)

AQR data
library

RMW Profitability factor, constructed as a long-short port-
folio of stocks sorted by their profitability

Fama and French
(2015)

Ken French web-
site

RMWs RMW with a hedged unpriced component Daniel, Mota, Rottke,
and Santos (2020)

Kent Daniel
website

R EG Expected growth factor, constructed as a long-short
portfolio of stocks sorted by their forecasted growth
rates

Hou, Mo, Xue, and
Zhang (2021)

Lu Zhang web-
site
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R IA Investment factor, constructed as a long-short port-
folio of stocks sorted by their investment-to-capital

Hou, Xue, and Zhang
(2015)

Lu Zhang web-
site

R ROE Profitability factor, constructed as a long-short port-
folio of stocks sorted by their return on equity

Hou, Xue, and Zhang
(2015)

Lu Zhang web-
site

SMB Size factor, constructed as a long-short portfolio of
stocks sorted by their market cap

Fama and French
(1992)

Ken French web-
site

SMBs SMB with a hedged unpriced component Daniel, Mota, Rottke,
and Santos (2020)

Kent Daniel
website

STREV Short-term reversal factor, constructed as a long-
short portfolio of stocks sorted by their previous
month return

Jegadeesh and Titman
(1993)

Ken French web-
site

C Results with duration-adjusted bond returns

We replicate the main results in in Section 3 using bond duration-adjusted returns.
Duration-adjusted returns are computed for each bond at each time t such that the re-
sultant return is in excess of a portfolio of duration-matched U.S. Treasury Bond returns.
The total return for corporate bond i in month t is,

Ri,t =
Bi,t + AIi,t + Couponi,j,t

Bi,t−1 + AIi,t−1

− 1,

where Bi,t is the clean price of bond i in month t, AIi,t is the accrued interest, and Couponi,t

is the coupon payment, if any.

The bond credit excess return (‘duration adjusted return’) is the total bond return minus
a hedging portfolio of U.S Treasury Bonds that have the same duration as the bond in month
t. The duration-adjusted return isolates the portion of a bonds performance that is attributed
solely to the credit risk of each bond. The duration-adjusted return is defined as,

rei,t = Ri,t − rDur
i,t ,

where ri,t is the total return of bond i in month t and rDur
i,t is the duration-matched portfolio

of U.S Treasury bonds for bond i in month t. We also use rei,t to compute the traded bond
factor returns.

Results obtained with duration-adjusted returns are reported in Tables A.2–A.4 and
Figures A.1–A.7.
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Table A.2: Posterior factor probabilities and risk prices – bond specific factor zoo – duration-
adjusted returns

Factor prob., E[γj|data] Price of Risk, E[λj|data]
Total Prior SR Total Prior SR

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.589 0.737 0.806 0.797 0.098 0.356 0.602 0.731
MKTB 0.535 0.566 0.575 0.550 0.055 0.159 0.269 0.371
YSP 0.499 0.505 0.519 0.570 0.002 0.011 0.030 0.095
INFLV 0.498 0.508 0.519 0.548 0.005 0.021 0.054 0.139
UNCf 0.503 0.511 0.520 0.515 −0.013 −0.047 −0.106 −0.207
LVL 0.496 0.494 0.496 0.500 0.000 −0.002 −0.005 −0.015
INFLC 0.497 0.495 0.494 0.495 0.000 0.000 0.000 0.001
EPU 0.495 0.490 0.487 0.474 0.001 0.006 0.019 0.050
UNCr 0.491 0.490 0.485 0.477 0.000 0.001 0.006 0.021
EPUT 0.492 0.489 0.487 0.469 0.000 0.000 −0.006 −0.02
UNC 0.493 0.489 0.474 0.441 −0.003 −0.008 −0.011 −0.004
TERM 0.503 0.499 0.460 0.397 0.047 0.117 0.150 0.145
VAL 0.488 0.481 0.464 0.415 0.040 0.101 0.173 0.237
CPTL 0.489 0.480 0.458 0.411 −0.003 −0.014 −0.024 −0.033
CRY 0.488 0.479 0.458 0.410 0.040 0.100 0.165 0.223
VIX 0.488 0.470 0.446 0.393 −0.009 −0.025 −0.046 −0.059
DEF 0.478 0.468 0.451 0.400 −0.022 −0.088 −0.164 −0.217
MKTBD 0.478 0.451 0.425 0.384 0.023 0.027 −0.001 −0.074
DRF 0.480 0.453 0.425 0.373 0.020 0.017 −0.015 −0.074
STREVB 0.487 0.462 0.417 0.343 0.012 0.034 0.055 0.067
HMLB 0.495 0.466 0.410 0.328 0.041 0.077 0.081 0.067
CRF 0.471 0.434 0.394 0.331 0.022 0.065 0.115 0.143
DUR 0.475 0.440 0.390 0.307 −0.014 −0.045 −0.064 −0.060
LTREVB 0.481 0.439 0.374 0.286 0.014 0.017 0.006 −0.003
MOMB 0.481 0.431 0.371 0.288 −0.020 −0.021 0.000 0.018

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 25 bond
specific factors described in Appendix B. The prior for each factor inclusion is a Beta(1, 1), yielding a prior
expectation for γj of 50%. Test assets are the returns, computed in excess of the duration-matched U.S.
Treasury Bond rate of return, of 50 bond portfolios sorted on credit spreads, size, rating and maturity, plus
the 14 traded bond factors (N = 64). Results are tabulated for different values of the prior Sharpe ratio,√
Eπ[SR2

f | σ2], with values set to 20%, 40%, 60% and 80% of the ex-post maximum Sharpe ratio of the test

assets. Sample: 1986:01 to 2021:09 (T = 429).
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Table A.3: Posterior factor probabilities and risk prices – bond and stock factor zoo –
duration-adjusted returns

Factor prob., E[γj|data] Price of Risk, E[λj|data]
Total Prior SR Total Prior SR

Factors: 20% 40% 60% 80% 20% 40% 60% 80%

PEADB 0.571 0.712 0.800 0.822 0.075 0.291 0.546 0.746
MKTB 0.522 0.561 0.568 0.557 0.042 0.132 0.232 0.343
YSP 0.501 0.502 0.515 0.552 0.002 0.008 0.023 0.068
INFLV 0.498 0.504 0.513 0.540 0.004 0.016 0.041 0.103
UNCf 0.501 0.507 0.517 0.514 −0.010 −0.037 −0.084 −0.168
LIQNT 0.495 0.500 0.508 0.530 −0.002 −0.011 −0.032 −0.091
RMWs 0.497 0.500 0.499 0.498 0.000 0.001 0.002 0.006
CMAs 0.498 0.500 0.498 0.494 0.000 0.000 0.000 −0.001
LVL 0.494 0.494 0.496 0.504 0.000 −0.001 −0.004 −0.011
SMBs 0.496 0.495 0.496 0.499 0.001 0.004 0.010 0.027
R IA 0.498 0.495 0.494 0.494 −0.001 −0.003 −0.007 −0.019
LTREV 0.494 0.495 0.497 0.494 0.002 0.010 0.029 0.073
MKTSs 0.499 0.498 0.492 0.491 −0.001 −0.003 −0.009 −0.026
SMB 0.494 0.492 0.497 0.494 0.003 0.015 0.044 0.100
RMW 0.495 0.494 0.494 0.494 0.003 0.012 0.031 0.079
INFLC 0.494 0.494 0.494 0.493 0.000 0.000 0.000 0.001
CMA 0.494 0.494 0.494 0.491 0.000 −0.002 −0.005 −0.014
HMLs 0.491 0.493 0.494 0.490 −0.001 −0.003 −0.009 −0.027
HML 0.495 0.495 0.491 0.483 0.000 −0.001 −0.001 −0.004
EPU 0.496 0.492 0.490 0.478 0.001 0.005 0.014 0.037
EPUT 0.493 0.494 0.490 0.476 0.000 0.000 −0.004 −0.018
UNCr 0.494 0.492 0.487 0.481 0.000 0.001 0.004 0.013
FIN 0.493 0.490 0.490 0.480 0.001 0.005 0.014 0.034
BAB 0.494 0.492 0.490 0.476 0.002 0.008 0.017 0.030
STREV 0.493 0.491 0.486 0.475 0.003 0.011 0.027 0.062
LIQ 0.496 0.494 0.489 0.467 0.000 −0.002 −0.004 −0.005
PEAD 0.493 0.491 0.483 0.474 0.000 0.002 0.006 0.018
R EG 0.494 0.493 0.481 0.455 0.000 0.000 −0.003 −0.004
UNC 0.494 0.491 0.478 0.452 −0.002 −0.007 −0.010 −0.008
HMLD 0.493 0.486 0.479 0.454 0.003 0.012 0.028 0.053
TERM 0.504 0.500 0.478 0.428 0.037 0.103 0.150 0.165
CPTL 0.493 0.486 0.471 0.447 −0.002 −0.012 −0.024 −0.044
R ROE 0.495 0.485 0.473 0.443 −0.003 −0.006 −0.013 −0.026
QMJ 0.490 0.480 0.470 0.450 −0.006 −0.016 −0.04 −0.092
MOMS 0.491 0.484 0.470 0.444 −0.002 −0.006 −0.013 −0.022
MKTS 0.489 0.482 0.469 0.444 0.001 −0.002 −0.010 −0.021
CPTLT 0.493 0.482 0.468 0.440 0.000 −0.004 −0.004 0.005
CRY 0.492 0.481 0.465 0.427 0.033 0.083 0.143 0.213
VAL 0.491 0.479 0.463 0.423 0.032 0.082 0.142 0.199
VIX 0.495 0.479 0.462 0.418 −0.007 −0.019 −0.039 −0.054
DEF 0.476 0.472 0.462 0.428 −0.017 −0.073 −0.148 −0.221
MKTBD 0.482 0.459 0.435 0.401 0.019 0.026 0.004 −0.067
DRF 0.485 0.460 0.435 0.396 0.017 0.019 −0.008 −0.064
HMLB 0.494 0.471 0.427 0.357 0.033 0.068 0.079 0.068
STREVB 0.485 0.467 0.427 0.360 0.010 0.027 0.046 0.056
DUR 0.482 0.451 0.405 0.336 −0.011 −0.040 −0.060 −0.062
CRF 0.475 0.439 0.407 0.350 0.018 0.051 0.097 0.130
LTREVB 0.487 0.451 0.394 0.317 0.012 0.017 0.005 −0.011
MOMB 0.485 0.447 0.393 0.320 −0.017 −0.023 −0.006 0.013

Posterior probabilities, E[γj |data], and posterior mean of (annualized) risk prices, E[λj |data], of the 49 bond and equity factors

described in AppendixB. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj of 50%. Test

assets are the returns, computed in excess of the duration-matched U.S. Treasury Bond rate of return, of 50 bond portfolios

sorted on credit spreads, size, rating and maturity, plus the 14 traded bond factors (N = 64). Results are tabulated for different

values of the prior Sharpe ratio,
√

Eπ [SR2
f | σ2], with values set to 20%, 40%, 60% and 80% of the ex-post maximum Sharpe

ratio of the test assets. Sample: 1986:01 to 2021:09 (T = 429).
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Table A.4: Out-of-sample cross-sectional asset pricing with 127 cross-sections – duration-
adjusted

RMSE MAPE R2
OLS R2

GLS

Panel A: BMA-SDF with 25 bond factors (33.6 mn models)

prior SR = 20% 0.089 0.065 0.114 0.066
[0.009] [0.007] [0.105] [0.059]

prior SR = 40% 0.086 0.064 0.128 0.071
[0.008] [0.006] [0.312] [0.069]

prior SR = 60% 0.088 0.066 0.066 0.056
[0.010] [0.009] [0.488] [0.075]

prior SR = 80% 0.089 0.067 0.034 0.057
[0.011] [0.010] [0.579] [0.081]

Panel B: BMA-SDF with 49 bond and stock factors (563 tn models)

prior SR = 20% 0.089 0.066 0.101 0.063
[0.010] [0.007] [0.082] [0.056]

prior SR = 40% 0.086 0.063 0.146 0.080
[0.008] [0.006] [0.254] [0.067]

prior SR = 60% 0.087 0.065 0.112 0.079
[0.009] [0.008] [0.420] [0.074]

prior SR = 80% 0.087 0.066 0.089 0.092
[0.011] [0.010] [0.524] [0.081]

Panel C: Benchmark models and most likely factors

CAPMB 0.095 0.072 −0.025 0.062
[0.011] [0.010] [0.110] [0.062]

CAPM 0.097 0.073 −0.050 0.039
[0.011] [0.010] [0.082] [0.060]

FF5 0.101 0.075 −0.159 −0.019
[0.014] [0.010] [0.174] [0.102]

PEADB 0.095 0.071 −0.045 −0.139
[0.011] [0.008] [0.301] [0.091]

Top factors bond 0.112 0.094 −0.531 −0.134
[0.013] [0.014] [0.907] [0.154]

Top factors all 0.128 0.105 −1.079 −0.057
[0.016] [0.015] [1.861] [0.167]

This table reports the average out-of-sample asset pricing performance and associated standard errors of the
BMA-SDF, notable factor models, and factors with a posterior probability greater than 50%. Test assets
and the traded bond factors are computed with returns in excess of the duration-matched U.S. Treasury
Bond rate of return. The metrics are averaged over 127 possible combinations of the 7 sets of out-of-sample
test assets. The out-of-sample (OS) portfolios which form the combinations, include decile-sorted portfolios
on bond historical value-at-risk (95%), duration, bond value, bond book-to-market, long-term reversals,
momentum and the Fama French 17 industry portfolios. We use GMM-GLS to estimate factor prices of
risk for the CAPMB (bond CAPMB with duration adjusted returns), the equity CAPM, the original FF5
model of Fama and French (1992) and Fama and French (1993), which includes the MKTS, SMB, HML
and the DEF and TERM factors, and a single-factor model with PEADB. The ‘Top factors bond’ includes
PEADB, MKTB, INFLV, YSP and UNCf. The ‘Top factors all’ includes the above as well as LIQNT. For
the BMA-SDF, we report results for a range prior Sharpe ratio values that are set as 20%, 40%, 60% and
80% of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors. In the cross-sectional
OS tests, the models are first estimated using the baseline IS test assets and then used to price (without
additional parameters estimation), the OS assets. All the data is standardized, that is, pricing errors are in
Sharpe ratio units.
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Figure A.1: Posterior factor probabilities – bond factor zoo – duration-adjusted returns.

Posterior probabilities of factors, E[γj |data], of 25 bond related factors described in Appendix B. Test assets
include 50 bond portfolios sorted on credit spreads, size, rating and maturity, and the 14 traded bond factors
(N = 64). Both the traded bond factors and the 50 bond portfolios are constructed in excess of the duration-
matched U.S. Treasury Bond rate of return. The prior distribution for the jth factor inclusion is a Beta(1,
1), yielding a 0.5 prior expectation for γj . Posterior probabilities reported for different values of the prior

Sharpe ratio,
√
Eπ[SR2

f | σ2], set to 20%, 40%, 60% and 80% of the ex-post maximum Sharpe ratio of the

64 bond portfolios and traded factors. Sample period: 1986:01 to 2021:09 (T = 429).
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Figure A.2: Posterior factor probabilities – bond and stock factor zoo – duration-adjusted
returns.

Posterior probabilities of factors, E[γj |data], of 49 bond and stock factors described in Appendix B. Test
assets include 50 bond portfolios sorted on credit spreads, size, rating and maturity, and the 14 traded bond
factors (N = 64). Both the traded bond factors and the 50 bond portfolios are constructed in excess of the
duration-matched U.S. Treasury Bond rate of return. The prior distribution for the jth factor inclusion is
a Beta(1, 1), yielding a 0.5 prior expectation for γj . Posterior probabilities for different values of the prior

Sharpe ratio,
√
Eπ[SR2

f | σ2], set to 20%, 40%, 60% and 80% of the ex-post maximum Sharpe ratio of the

64 bond portfolios and traded factors. Sample period: 1986:01 to 2021:09 (T = 429).
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Figure A.3: Posterior factor probabilities and market prices of risk with duration-adjusted
returns – bond factor zoo.

Posterior factor probabilities (top panel), E[γj |data], and corresponding posterior market prices of risk
(bottom panel), E[λj |data], of 25 bond related factors described in Appendix B. Test assets include 50
bond portfolios sorted on credit spreads, size, rating and maturity, and the 14 traded bond factors, with
returns computed in excess of the duration-matched U.S. Treasury Bond rate of return (N = 64). The prior
distribution for the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior
Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors.
Sample period: 1986:01 to 2021:09 (T = 429).
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Figure A.4: Posterior SDF dimension and Sharpe Ratio with duration-adjusted returns –
bond factor zoo.

Posterior distributions of the number of factors to be included in the SDF (top panel) and of the SDF-implied
Sharpe ratio (bottom panel), computed using 25 bond related factors described in Appendix B. Test assets
include 50 bond portfolios sorted on credit spreads, size, rating and maturity, and the 14 traded bond factors,
with returns computed in excess of the duration-matched U.S. Treasury Bond rate of return (N = 64). The
prior distribution for the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The
prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded
factors. Sample period: 1986:01 to 2021:09 (T = 429).
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Figure A.5: Posterior factor probabilities and market prices of risk – bond and equity factor
zoo.

The figure plots posterior factor probabilities (top panel), E[γj |data], and the corresponding posterior market
prices of risk (bottom panel), E[λj |data], computed using the continuous spike-and-slab approach of Section 2
and 49 bond and equity factors described in Appendix B. Test assets include 50 bond portfolios sorted on
credit spreads, size, rating and maturity, and the 14 traded bond factors, with returns computed in excess
of the duration-matched U.S. Treasury Bond rate of return (N = 64). The prior distribution for the jth

factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 80%
of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors. Sample period: 1986:01
to 2021:09 (T = 429).
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Figure A.6: Posterior SDF dimension and Sharpe Ratio with duration-adjusted returns –
bond and equity factor zoo.

Posterior distributions of the number of factors to be included in the SDF (top panel) and of the SDF-
implied Sharpe ratio (bottom panel), computed using 49 bond and equity factors described in Appendix B.
Test assets include 50 bond portfolios sorted on credit spreads, size, rating and maturity, and the 14 traded
bond factors, with returns computed in excess of the duration-matched U.S. Treasury Bond rate of return
(N = 64). The prior distribution for the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation
for γj . The prior Sharpe ratio is set to 80% of the ex post maximum Sharpe ratio of the 64 bond portfolios
and traded factors. Sample period: 1986:01 to 2021:09 (T = 429).
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Figure A.7: BMA-SDF, economic cycles, and PEADB with duration-adjusted returns – bond
and equity factor zoo.

The figure plots the smoothed time series of the posterior mean of the BMA-SDF (left scale), computed
using the continuous spike-and-slab approach of Section 2 and 49 bond and equity factors described in
Appendix B, and of the smoothed PEAD factor annualized returns (right scale). The blue shaded areas
represent NBER-dated recessions, and the red dotted vertical lines correspond to the major stock market
crashes identified in Mishkin and White (2002) plus the 2008 and 2020 contractions. Test assets include 50
bond portfolios sorted on credit spreads, size, rating and maturity, and the 14 traded bond factors, with
returns computed in excess of the duration-matched U.S. Treasury Bond rate of return (N = 64). The prior
distribution for the jth factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior
Sharpe ratio is set to 80% of the expost maximum Sharpe ratio of the 64 bond portfolios and traded factors.
Sample period: 1986:01 to 2021:09 (T = 429).
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D Additional figures

Figure A.8: Posterior factor probabilities in sparse models for different prior SR – bond
factor zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

(d) prior Sharpe ratio = 80%

Posterior factor probabilities, E[γj |data] of 25 bond factors described in Appendix B. Test assets include 50
bond portfolios sorted on credit spreads, size, rating and maturity, with returns in excess of the one-month
risk-free rate, and the 14 traded bond factors (N = 64). Prior distribution for the jth factor inclusion is
a Beta(3, 12), yielding a 0.2 prior mean for γj . Prior Sharpe ratio set to 20%, 40%, 60% of the ex post
maximum Sharpe ratio of the 64 bond portfolios and traded factors. Sample period: 1986:01 to 2021:09
(T = 429).
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Figure A.9: Posterior factor probabilities in sparse models for different prior SR – bond and
equity factor zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

(d) prior Sharpe ratio = 80%

The figure plots posterior factor probabilities, E[γj |data] computed using the continuous spike-and-slab
approach of Section 2 and 25 bond factors described in Appendix B. Test assets include 50 bond portfolios
sorted on credit spreads, size, rating and maturity, with returns computed in excess of the one-month risk-
free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor inclusion is a
Beta(3.45, 30.7), yielding a ≈ 0.10 prior expectation for γj . The prior Sharpe ratio is set to 20%, 40%, 60%,
and 80% of the ex post maximum Sharpe ratio achievable with the 64 bond portfolios and traded factors.
Sample period: 1986:01 to 2021:09 (T = 429).
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IA.1 Detailed data and variables construction

The following sections describe the various databases that we use in the paper. Across

all databases, we filter out bonds which have a time-to-maturity of less than 1-year. Fur-

thermore, for consistency, across all databases, we define bond ratings as those provided by

Standard & Poors (S&P). We include the full spectrum of ratings (AAA to D), but exclude

bonds which are unrated. For each database that we consider, we (the authors) do not

winsorize or trim bond returns in any way.

IA.1.1 Corporate bond databases

IA.1.1.1 Mergent Fixed Income Securities Database (FISD) database

Mergent Fixed Income Securities Database (FISD) for academia is a comprehensive

database of publicly offered U.S. bonds, research market trends, deal structures, issuer cap-

ital structures, and other areas of fixed income debt research. We apply to the FISD data

the standard filters used in the previous literature:

1. Only keep bonds that are issued by firms domiciled in the United States of America,

COUNTRY DOMICILE == ‘USA’.

2. Remove bonds that are private placements, PRIVATE PLACEMENT == ‘N’.

3. Only keep bonds that are traded in U.S. Dollars, FOREIGN CURRENCY == ‘N’.

4. Bonds that trade under the 144A Rule are discarded, RULE 144A == ‘N’.

5. Remove all asset-backed bonds, ASSET BACKED == ‘N’.

6. Remove convertible bonds, CONVERTIBLE == ‘N’.

7. Only keep bonds with a fixed or zero coupon payment structure, i.e., remove bonds

with a floating (variable) coupon, COUPON TYPE != ‘V’.

8. Remove bonds that are equity linked, agency-backed, U.S. Government, and mortgage-

backed, based on their BOND TYPE.
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9. Remove bonds that have a “non-standard” interest payment structure or bonds not

caught by the variable coupon filter (COUPON TYPE). We remove bonds that have an

INTEREST FREQUENCY equal to −1 (N/A), 13 (Variable Coupon), 14 (Bi-Monthly), and

15 and 16 (undocumented by FISD). Additional information on INTEREST FREQUENCY

is available on page 60 to 67 of the FISD Data Dictionary 2012 document.

IA.1.1.2 Bank of America Merrill Lynch (BAML) database

The BAML data is made available by the Intercontinental Exchange (ICE) and provides

daily bond price quotes, accrued interest, and a host of pre-computed corporate bond char-

acteristics such as the bond option-adjusted credit spread (OAS), the asset swap spread,

duration, convexity, and bond returns in excess of a portfolio of duration-matched Trea-

suries. The ICE sample spans the time period 1997:01 to 2021:09 and includes constituent

bonds from the ICE Bank of America High Yield (H0A0) and Investment Grade (C0A0)

Corporate Bond Indices.

ICE bond filters. We follow van Binsbergen, Nozawa, and Schwert (2023) and take the

last quote of each month to form the bond-month panel. We then merge the ICE data to

the filtered Mergent FISD database. The following ICE-specific filters are then applied:

1. Only include corporate bonds, Ind Lvl 1 == ‘corporate’

2. Only include bonds issued by U.S. firms, Country == ‘US’

3. Only include corporate bonds denominated in U.S. Dollars, Currency == ‘USD’

BAML/ICE bond returns. Total bond returns are computed in a standard manner in

ICE, and no assumptions about the timing of the last trading day of the month are made

because the data is quote based, i.e., there is always a valid quote at month-end to compute

a bond return. This means that each bond return is computed using a price quote at exactly

the end of the month, each and every month. This introduces homogeneity into the bond

returns because prices are sampled at exactly the same time each month. ICE only provides
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bid-side pricing, meaning bid-ask bias is inherently not present in the monthly sampled

prices, returns and credit spreads. The monthly ICE return variable is (as denoted in the

original database) trr mtd loc, which is the month-to-date return on the last business day

of month t.

IA.1.1.3 Lehman Brothers (LHM) database

The Lehman Brothers Bond database holds monthly price data for corporate (and other)

bonds from January 1973 to December 1997. The database categorizes the prices as either

quote or matrix prices and identifies whether the bonds are callable or not. However, as per

the findings of Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017), the difference

between quote and matrix prices or callable and non-callable bonds does not have a material

impact on cross-sectional return predictability. Hence, we include both types of observa-

tions. In addition, the Lehman Brothers data provides key bond details such as the amount

outstanding, credit rating, offering date, and maturity date. For the main results, we use

the LHM data from 1986:01 to 1996:12.

LHM filters. As for the other databases, we merge the LHM data to the pre-filtered

Mergent database and then apply the following LHM-specific filters following Elkamhi, Jo,

and Nozawa (2023):

1. Only include corporate bonds classified as ‘industrial’, ‘telephone utility’, ‘electric util-

ity’, ‘utility (other)’, and ‘finance’, as per the LHM industry classification system,

icode == {3 | 4 | 5 | 6 | 7}.

2. Remove the following dates for which there are no observations or valid return data,

date == {1975-08 | 1975-09 | 1984-12 | 1985-01}.

LHM returns. The LHM bond database includes corporate bond returns that have been

pre-computed. The accuracy of the LHM return computation has been verified empirically

by Elkamhi, Jo, and Nozawa (2023).
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LHM additional filters. We follow Bessembinder, Kahle, Maxwell, and Xu (2008) and

Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017) and apply the following filters

to the LHM data to account for potential data errors:

1. Remove observations with large return reversals, defined as a 20% or greater return

followed by a 20% or greater return of the opposite sign.

2. Remove observations if the prices appear to bounce back in an extreme fashion relative

to preceding days. Denote Rt as the month t return, we exclude an observation at

month t if Rt ×Rt−k < −0.02 for k = 1, . . . , 12.

3. Remove observations if prices do not change for more than three months, i.e., Pt

Pt−3
− 1

!= 0, where P is the quoted or matrix price.

IA.1.2 Combined data

For our main results, we rely on the data set that combines the LHM, and ICE data sets

over the sample period 1986:01–2021:09. The data is spliced together as follows:

1. From 1986:01–1996:12 we use the LHM data.

2. From 1997:01–2021:09 we use the ICE data.

IA.1.3 Robustness – WRDS bond database

TheWharton Research Data Services (WRDS) Bond Database is a pre-processed monthly

bond data set that uses the Enhanced Trade Reporting and Compliance Engine (TRACE)

and Mergent FISD bond databases. It was introduced by WRDS in April 2017. The data

is publicly available (requires a valid subscription to WRDS). After logging in to WRDS,

the data is available here. We use the version of the WRDS data set that spans the sample

2002:09–2021:09.

WRDS bond returns. The WRDS data team provides us with three different bond

return variables: RET EOM (returns are computed using bond prices that land on any day of
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the month), RET L5M (a bond must trade on the last five days of the month), and RET LDM (a

bond must trade on the last day of the month). For the results based on the WRDS Bond

Database, we always use RET L5M, i.e., a return is valid if the bond trades on the last five

days of month t and month t− 1. However, the publicly available data set any bond return

that is greater than 100% to 100%, i.e., returns are truncated at this level. Although this

does not make any material difference whatsoever to the main results, we carefully address

the issue below.

WRDS bond returns truncation correction. We carefully adjust for the truncation

of bonds with returns greater than +100% imposed by WRDS, by setting any bond return

which is truncated to the return observed in the ICE database, i.e., if the WRDS bond

return is equal to 100% (truncated), we set this value to the bond return from ICE as the

‘true’ bond return. If the ICE return is missing, we set the value to the return computed

from the TRACE data itself. These adjustments do not make any material difference to the

robustness results. In total we identify only 94 cases where the truncation occurs, and we

are able to address 91 of them. The remaining 3 cases are removed.

WRDS bond filters. To align the data to the Bank of America Merrill Lynch (BAML)

corporate bond database provided by the Intercontinental Exchange (ICE), we follow An-

dreani, Palhares, and Richardson (2023) and use the following filters (all using data provided

by WRDS):

1. Remove investment (IG) rated bonds that have less than USD 150 million outstanding

prior to, and including, November 2004, and less than USD 250 million after November

2004.

2. Remove non-investment grade (HY) rated bonds that have less than USD 100 million

outstanding prior to, and including, September 2016, and less than USD 250 million

after September 2016.

3. Remove bonds which are classified as zero-coupon, bond type == ‘CMTZ’.

4. Remove bonds which are classified as convertible, conv == ‘N’.
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We merge the WRDS data to the Mergent FISD database (also publicly available via the

WRDS data platform) and apply the filters already discussed above. This procedure delivers

a transaction-based TRACE data set that closely aligns to the quote-based ICE data.

IA.1.4 Correcting price-based TRACE characteristics for microstruc-
ture noise

As first emphasized by Bartram, Grinblatt, and Nozawa (2020), BGN, price measure-

ment error shared by a month-end transaction ‘price-based’ signal and the subsequent return

generates correlation between the two. This affects, for example signals based on bond credit

spreads, yields and size (market capitalization) for the TRACE (WRDS) database. We fol-

low the methodology of BGN and Dickerson, Robotti, and Rossetti (2023), DRR, and define

the ‘month-end’ price-based signal to use a transaction-price at least one-business day be-

fore the price used to compute a month-end ex ante return. This methodology dampens the

transmission mechanism of market microstructure noise (MMN) inherent in the price-based

TRACE price signals. DRR show that by accounting for the transmission of the measure-

ment error in this manner, the out-of-sample TRACE price-based anomalies are aligned to

those observed when using the ICE data set.

IA.2 CAPMB: Two-pass regression risk premium vs.

SDF-based market price of risk

In this section we report two-pass regression estimates of the risk premium attached to

MKTB as sole factor as well as linear SDF estimates of the market price of risk in the

CAPMB model.

To understand why the two types of estimations can lead to very different outcomes,

let’s consider a simple example with two (demeaned) tradable risk factors only, i.e. ft =

[f1,t, f2,t]
⊤, and suppose for simplicity that their covariance matrix is

Σ =

[
1 ρ
ρ 1

]
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Figure IA.1: CAPMB: two pass-regression risk premium, and market price of risk

(a) Two-pass regression risk premium (b) SDF-based market price of risk

The figure plots the posterior distributions of the two-pass regression ex post risk premium, left panel, and
SDF-based market price of risk, right panel, of a model with MKTB as the only risk factor, i.e. CAPMB. Test
assets include 50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed
in excess of the one-month risk-free rate. The prior Sharpe ratio does not impose any shrinkage being set to
the ex post Sharpe ratio of the MKTB factor. Sample period: 1986:01 to 2021:09 (T = 429).

Suppose further that only the first factor is part of the SDF, and has a market price of risk

equal to κ. That is

Mt = 1− f⊤
t λf = 1− [f1,t, f2,t]

⊤
[
κ
0

]
= 1− f1,tκ

Denoting with µRP =
[
µRP,1, µRP,2

]⊤
the vector of risk premia of the factors, applying the

fundamental asset pricing equation to the returns generated by the factors we have

µRP = Σλf =

[
1 ρ
ρ 1

] [
κ
0

]
=

[
k
ρκ

]
.

That is, the second factor, that is not part of the SDF, commands nevertheless a non-zero

risk premium (equal to ρκ) as long as the factor has non-zero correlation (i.e., as long as

ρ ̸= 0) with the true risk factor—the one that is part of the SDF . This also implies that

a two-pass regression method that uses the second factor as the driver of a cross-section of

asset returns will generally estimate its ex post risk premium as being non-zero.

To estimate the SDF of the CAPMB model we rely on the Bayesian-SDF estimator in

Definition 1 of Bryzgalova, Huang, and Julliard (2023). This is equivalent to the method

presented in Section 2 under the null that MKTB is the only factor in the SDF with proba-

bility 1 and that the model is true. To put the comparison of MRP and ex post risk premia

8



estimates on the same footing, we estimate the two pass regression using the Bayesian im-

plementation of the Fama and MacBeth (1973) method in Bryzgalova, Huang, and Julliard

(2022).† Posterior distributions of the two-pass regression ex post risk premium and SDF-

based market price of risk are plotted, respectively, in panels (a) and (b) of Figure IA.1.

The estimates suggests that, albeit MKTB carries a sizable and significant risk premium, it

is very unlikely that the data are generated by a “true” latent SDF with MKTB as the only

factor—the Bayesian p-value of its market price of risk being equal to zero is about 64.78%.

†In particular, to implement the two-pass regression we use the fact that the posterior of the time series
estimates of the MKTB betas and average excess returns of the test assets, µR, under a flat prior, follow
the canonical Normal-inverse-Wishart posterior of a linear regression model (see, e.g., Bauwens, Lubrano,
and Richard (1999)), and can be sampled accordingly. Furthermore, conditional on the posterior draws of
the first-pass regression, and under the null of the model being true, the posterior distribution of the (OLS)
second-pass regression is a Dirac distribution at (β⊤β)−1β⊤µR, where β = (1N , βf ), βf = CfΣ

−1
f and the

factor f is simply MKTB.
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IA.3 Additional figures and tables
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Figure IA.2: Posterior factor probabilities – bond and stock factor zoo – WRDS TRACE
sample.

Posterior probabilities, E[γj |data], of 49 bond and stock factors described in Appendix B. Test assets include
50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of
the one-month risk-free rate, and the 14 traded bond factors (N = 64). Both the test assets and the 14
traded bond factors are computed with the WRDS TRACE data. The prior distribution for the jth factor
inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . Posterior probabilities for different values

of the prior Sharpe ratio,
√
Eπ[SR2

f | σ2], set to 20%, 40%, 60% and 80% of the ex post maximum Sharpe

ratio of the 64 bond portfolios and traded factors. Sample period: 2002:09 to 2021:09 (T = 229).
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Table IA.I: Cross-sectional asset pricing – WRDS TRACE sample.

In-sample Out-of-sample

RMSE MAPE R2
OLS R2

GLS RMSE MAPE R2
OLS R2

GLS

Panel A: BMA-SDF with 25 bond factors (33.6 mn models)

prior SR = 20% 0.180 0.129 0.282 0.064 0.121 0.093 0.104 0.037
prior SR = 40% 0.146 0.109 0.523 0.150 0.116 0.090 0.185 0.068
prior SR = 60% 0.125 0.098 0.652 0.217 0.115 0.089 0.195 0.081
prior SR = 80% 0.114 0.090 0.712 0.259 0.115 0.089 0.201 0.092

Panel B: BMA-SDF with 49 bond and stock factors (563 tn models)

prior SR = 20% 0.187 0.133 0.220 0.049 0.123 0.094 0.074 0.029
prior SR = 40% 0.158 0.116 0.448 0.125 0.117 0.091 0.160 0.058
prior SR = 60% 0.134 0.103 0.598 0.202 0.115 0.090 0.191 0.076
prior SR = 80% 0.118 0.093 0.693 0.278 0.114 0.089 0.210 0.089

Panel C: Benchmark models and most likely factors

CAPMB 0.195 0.113 0.152 0.071 0.110 0.083 0.264 0.067
CAPM 0.305 0.245 −1.069 −0.031 0.165 0.120 −0.663 0.011
FF5 0.201 0.147 0.101 0.043 0.135 0.102 −0.113 0.025
PEADB 0.318 0.220 −1.242 0.087 0.150 0.117 −0.362 −0.068
Top factors bond 0.126 0.103 0.649 0.366 0.133 0.101 −0.081 0.073
Top factors all 0.154 0.133 0.470 0.417 0.134 0.106 −0.101 0.034

In-sample and cross-sectional out-of-sample pricing performance of BMA-SDF, notable factor models, and
factors with a posterior probability greater than 50%. We use the WRDS TRACE data spanning the sample
period 2002:09 to 2021:09 (T = 229). We use GMM-GLS to estimate factor risk prices for CAPMB, CAPM,
and the and Fama and French (1992, 1993) model, which includes the MKTS, SMB, HML, DEF and
TERM factors, and a single-factor model with PEADB. The ‘Top factors bond’ model includes PEADB,
YSP, UNCf, MKTB and DRF. The ‘Top factors all’ model includes additionally CMAs. For the BMA-
SDF, we report results for a range of prior Sharpe ratio values that are set as 20%, 40%, 60% and 80%
of the ex post maximum Sharpe ratio of the 64 bond portfolios and traded factors. In-sample (IS) test
assets include 50 bond portfolios sorted on credit spreads, size, rating and maturity and the 14 traded bond
factors (N = 64). Out-of-sample (OS) test assets assets include decile-sorted portfolios on bond historical
value-at-risk (95%), duration, bond value, bond book-to-market, long-term reversals, momentum and the 17
Fama French industry portfolios (N = 77). In cross-sectional OS tests, models are first estimated using the
baseline IS test assets and then used to price (with no additional parameter estimation) the OS assets. All
data is standardized, that is, pricing errors are in Sharpe ratio units.

11



Figure IA.3: Posterior factor probabilities for different prior SR – bond factor zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

The figure plots posterior factor probabilities, E[γj |data] computed using the continuous spike-and-slab
approach of Section 2 and 25 bond factors described in Appendix B. Test assets include 50 bond portfolios
sorted on credit spreads, size, rating and maturity, with returns computed in excess of the one-month risk-
free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor inclusion is a
Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 20%, 40%, and 60% of the
ex post maximum Sharpe ratio achievable with the 64 bond portfolios and traded factors. Sample period:
1986:01 to 2021:09 (T = 429).
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Figure IA.4: Posterior SDF dimensionality for different prior SR – bond factor zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

Posterior distributions of the number of factors to be included in the SDF, for different values of the prior
Sharpe ratio, computed using 25 bond related factors described in Appendix B. Test assets include 50 bond
portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of the one-
month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor
inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 20%, 40%,
and 60% of the ex post maximum Sharpe ratio achievable with the 64 bond portfolios and traded factors.
Sample period: 1986:01 to 2021:09 (T = 429).
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Figure IA.5: Posterior factor probabilities for different prior SR – bond and equity factor
zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

The figure plots posterior factor probabilities, E[γj |data] computed using the continuous spike-and-slab
approach of Section 2 and 49 bond and equity factors described in Appendix B. Test assets include 50 bond
portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of the one-
month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor
inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 20%, 40%,
and 60% of the ex post maximum Sharpe ratio achievable with the 64 bond portfolios and traded factors.
Sample period: 1986:01 to 2021:09 (T = 429).
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Figure IA.6: Posterior SDF dimensionality for different prior SR – bond and equity factor
zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

Posterior distributions of the number of factors to be included in the SDF, for different values of the prior
Sharpe ratio, computed using 49 bond and equity related factors described in Appendix B. Test assets include
50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of the
one-month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor
inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 20%, 40%,
and 60% of the ex post maximum Sharpe ratio achievable with the 64 bond portfolios and traded factors.
Sample period: 1986:01 to 2021:09 (T = 429).
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Figure IA.7: Posterior factor probabilities for different prior SR with duration adjusted
returns – bond factor zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

The figure plots posterior factor probabilities, E[γj |data] computed using the continuous spike-and-slab
approach of Section 2 and 25 bond factors described in Appendix B. Test assets include 50 bond portfolios
sorted on credit spreads, size, rating and maturity, with returns computed in excess of the one-month risk-
free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor inclusion is a
Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 20%, 40%, and 60% of the
ex post maximum Sharpe ratio achievable with the 64 bond portfolios and traded factors. Sample period:
1986:01 to 2021:09 (T = 429).
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Figure IA.8: Posterior SDF dimensionality for different prior SR with duration-adjusted
returns – bond and equity factor zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

Posterior distributions of the number of factors to be included in the SDF, for different values of the prior
Sharpe ratio, computed using 49 bond and equity related factors described in Appendix B. Test assets include
50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of
the one-month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth

factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 20%,
40%, 60% and 80% of the ex post maximum Sharpe ratio achievable with the 64 bond portfolios and traded
factors. Sample period: 1986:01 to 2021:09 (T = 429).
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Figure IA.9: Posterior factor probabilities for different prior SR with duration-adjusted
returns– bond and equity factor zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

The figure plots posterior factor probabilities, E[γj |data] computed using the continuous spike-and-slab
approach of Section 2 and 49 bond and equity factors described in Appendix B. Test assets include 50 bond
portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of the one-
month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor
inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 20%, 40%,
and 60% of the ex post maximum Sharpe ratio achievable with the 64 bond portfolios and traded factors.
Sample period: 1986:01 to 2021:09 (T = 429).
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Figure IA.10: Posterior SDF dimensionality for different prior SR with duration-adjusted
returns – bond and equity factor zoo.

(a) prior Sharpe ratio = 20%

(b) prior Sharpe ratio = 40%

(c) prior Sharpe ratio = 60%

Posterior distributions of the number of factors to be included in the SDF, for different values of the prior
Sharpe ratio, computed using 49 bond and equity related factors described in Appendix B. Test assets include
50 bond portfolios sorted on credit spreads, size, rating and maturity, with returns computed in excess of the
one-month risk-free rate, and the 14 traded bond factors (N = 64). The prior distribution for the jth factor
inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj . The prior Sharpe ratio is set to 20%, 40%,
and 60% of the ex post maximum Sharpe ratio achievable with the 64 bond portfolios and traded factors.
Sample period: 1986:01 to 2021:09 (T = 429).
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