Discussion of:

Which (Nonlinear) Factor Models?

by Caio Almeida & Gustavo Freire

Christian Julliard

London School of Economics

IWiFE 2023

In a nutshell: method

Which γ ?

Three key ingredients:

1. SDF recovery

Minimum divergence between \mathbb{Q} and \mathbb{P} under Euler equation constraint:

$$\widehat{\mathbb{Q}} = \arg\min D(\mathbb{Q}||\mathbb{P};\gamma) \ s.t. \ \mathbf{0} = \mathbb{E}^{\mathbb{P}} \left[M \mathbf{R}^{\mathbf{e}} \right] = \mathbb{E}^{\mathbb{Q}} \left[\mathbf{R}^{\mathbf{e}} \right] \quad \Rightarrow \quad \widehat{M}\left(\mathbf{R}^{\mathbf{e}} \right) \propto \frac{\overline{d\mathbb{Q}}}{d\mathbb{P}}$$

(e.g., Stutzer, 1995, Ghosh-Julliard-Taylor, 2016, 2019, Almeida-Garcia, 2017, Ghosh-Julliard-Stutzer, 2020)

2. Constraint on SDF components – aka, the "models"

Low dimensional tradable factors (F_i) models in the literature, i.e. as above but

$$\mathbf{0} = \mathbb{E}^{\mathbb{P}}\left[M\mathbf{F}_{j}\right] = \mathbb{E}^{\mathbb{Q}}\left[\mathbf{F}_{j}\right] \quad \Rightarrow \quad \widehat{M}\left(\mathbf{F}_{j}\right) \propto \frac{\widehat{dQ}}{d\mathbb{P}}$$

3. SDF Sharpe ratio comparisons

 $SR^2 \text{ of } \widehat{M}\left(\mathbf{F}_j\right) := SR^2 \text{ of test assets} - SR^2 \text{ of alphas from GLS CSR on } \widehat{M}\left(\mathbf{F}_j\right).$

Note: test assets matter (cf. Barillas-Shanken, 2017)

Christian Julliard (LSE)

In a nutshell: findings

Which γ ?

For some $\gamma > 0$, SR^2 of $\widehat{M}(\mathbf{F}_j) >> SR^2$ of \mathbf{F}_j .

Which divergence? (Which γ ?)

Which γ ?

- Overwhelmingly, the previous literature has focused on relative entropy, i.e. just two cases:
- $\gamma = -1\,$: akin to Owen's Empirical Likelihood
 - $\gamma=0\,$: akin to Kitamura's Exponential Tilting
 - Why? 1) MLE analogous; 2) minimum KLIC; 3) appropriate for tail risk/large deviations;4) Bayesian interpretation (approximated/exact)

Note: in the data, SDF estimates with the above tend to be almost identical

- This paper uses the Cressie-Read (1984) family as Almeida-Garcia (2017)
- ⇒ "free" γ (∈ [-3, 30]), micro-founded as HARA preferences SDF...
 - ... but not all HARA preferences are born equal...
 - ... and they come with constraints!

Christian Julliard (LSE)

Summary	Which γ ?	Fixing the null	Misspecification, bias & sparsity	Conclusion & Final Suggest
Which o	<pre>cont'd</pre>			

Recall: HARA \Leftrightarrow 1/ARA is linear in final wealth/state variable

If $\gamma > 0$:

- **1**. ARA \uparrow as wealth/state \uparrow
- \Rightarrow the richer you are the <u>less</u> you want to invest in risky assets.
- 2. Utility function well behaved up to an upper bound on wealth/state variable.
- **Example:** satiation point of quadratic utility, after which canonical TVC does not hold and optimal policy not pinned down by Euler equation as usual.
 - Ignoring the bound, Q and P are <u>not</u> absolutely continuous if the upper bound is crossed with non-zero probability (different zero prob. sets)
 - ⇒ marginal utility stays at zero from upper bound onward, and an assets that pays only in these states has a price of zero.
 - ; SDF recovery breaks down! (measures are not equivalent)

Note: $\gamma < 0$ gives a lower bound, but that is less problematic: e.g. consumption can't be negative / no-Ponzi-game condition (and dual form with $\gamma = -1$ ensures no violation, in sample, of absolute continuity).

Christian Julliard (LSE)

Is $\gamma > 0$ a problem in the applications?

Which γ ?

... and exactly at the values for which SR^2 of $\widehat{M}(R^{MKT}) >> SR^2$ of R^{MKT} .

 \Rightarrow Must check for all other models!

Suggestions: 1) I'd drop the HARA interpretation (or do it properly with domain constraint) and focus on statistical properties; 2) cross-validate to choose one γ ; 3) regularise the problem to ensure absolute continuity of \mathbb{Q} and \mathbb{P}

Christian Julliard (LSE)

Summary	Which γ ?	Fixing the null

Fixing the null and testing it formally

• The paper compares linear SDFs to non-linear minimum discrepancy ones, but you could actually fix the "null" and test wether the non-linearities are need.

How? Ghosh-Julliard-Taylor (2016) considers SDFs of the form (with $\gamma = 0$ or -1)

$$M_t = \underbrace{m(X_t)}_{observable} \times \underbrace{\psi_t}_{latent}$$

$$\widehat{\Psi} = \arg\min D(\Psi||\mathbb{P};\gamma) \ s.t. \ \mathbf{0} = \mathbb{E}^{\mathbb{P}} \left[M\mathbf{R}^{\mathbf{e}} \right] = \mathbb{E}^{\Psi} \left[m(X)\mathbf{R}^{\mathbf{e}} \right] \quad \Rightarrow \quad \widehat{\psi}\left(m(X)\mathbf{R}^{\mathbf{e}} \right) \propto \frac{d\Psi}{d\mathbb{P}}$$

- easy to extend to other values of γ (usual dual solution, on the valid domain, but with $m(X_t)$ scaling returns).
- \Rightarrow set $m(X_t)$ to be the linear SDF and:
 - **1**. can test formally if non-linearities are needed (χ^2 test)
 - 2. can decompose how much of the pricing ability comes from each component, globally and on a cumulant-by-cumulant basis (exact result for $\gamma = -1$ or 0)

Christian Julliard (LSE)

Summary	Which γ ?	Fixing the null	Misspecification, bias & sparsity	Conclusion & Final Suggestie

Misspecification, bias & sparsity

- 1. Ghosh-Otsu (2021) implies that SDF recovery (with $\gamma = 0$ or -1) is biased under mispecification
- \Rightarrow result likely holds for other γ (and CV would likely fail, Sueishi, 2017)
- 2. The "true" latent (linear) SDF is <u>dense</u> in the space of observable factors (Bryzgalova-Huang-Julliard, 2023, (equity) & Dickerson-Julliard-Mueller, 2023, (bonds)).
- $\Rightarrow\,$ Low-dimensional linear SDFs the paper starts from are all misspecified
- 1+2= Need to tackle the bias/omitted variables formally (e.g., Giglio-Xiu, 2021, or at least acknowledge it)
 - But: sparsity is <u>not</u> invariant to transformations (Giannone-Lenza-Primiceri, 2021)
 - **Q**: Do non-linearities replace the need for a dense SDF? Can be tested formally! (as a Bayesian at least)

Conclusion & Final Suggestions

Which γ ?

Baseline: A clever, interesting, and well written, paper, that makes important points, and that I enjoyed reading.

 \Rightarrow a lot of upside potential

But I would not submit it yet:

- Absolute continuity of ${\mathbb Q}$ and ${\mathbb P}$ with $\gamma>0$ needs fixing
- Would benefit from going back to what the non-linearities capture exactly (note: link of dual Lagrange multipliers and portfolio weights of HARA agent)
- Proposed extension to nontradable factors will not work for weak ones
- The bootstrap procedure needs to be fully spelled out

... and I fully agree with Olivier's suggestions - take them on board!