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Abstract

Commonly used frequentist estimation methods for linear factor models of asset returns
are invalidated by weak and spurious factors. The problem is amplified by omitted vari-
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techniques. Conversely, the Bayesian analogue of the popular Fama and MacBeth
(1973) two-pass regressions method provides reliable risk premia estimates for both
tradable and nontradable factors, detects those weakly identified, delivers valid credi-
ble intervals for all objects of interest, and is intuitive, fast and simple to implement. In
other words, weak and spurious factors are not a problem for the Bayesian estimation
of Fama-MacBeth regressions.
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1 Introduction

Linear factor models are ubiquitous in asset pricing. The economics behind these models
can be summarized in one sentence: The expected return of an asset equals its exposures to
systematic risk factors multiplied by the factors’ risk premia. A typical formulation of these
models is described as follows:

Rt = βfλf + βf (ft − µf ) + εt, ft ⊥ εt, t = 1, . . . T, (1)

where the returns of N test assets, in excess of the risk-free rate, are denoted by Rt =

(R1t . . . RNt)
⊤, ft = (f1t . . . fKt)

⊤ denotes K systematic (either tradable or nontradable) risk
factors with unconditional expectations µf , βf are the loadings on systematic risk, λf are
the factors’ risk premia, and εt denotes the unpriced idiosyncratic errors.

Factors’ risk premia, λf , are often estimated via the Fama-MacBeth (FM) regression
method (see Fama and MacBeth (1973)) due to its simplicity and the intuitive appeal of
its hierarchical structure. In the FM procedure, the factor exposures of asset returns, βf ∈
RN×K , are recovered from the following time-series regression:

Rt = µR + βf (ft − µf ) + εt, (2)

The factors’ risk premia, λf ∈ RK , are then estimated from the cross-sectional regression:

!µR = "βfλf +α, (3)

where !µR are the sample average returns of Rt, "βf denote the time-series estimates from
equation (2), and α ∈ RN is the vector of pricing errors. The ordinary or generalized
least square (OLS or GLS) estimates of factors’ risk premia, as well as their standard errors
with the Shanken (1992) correction, are given by equations (12.11), (12.15), and (12.19) in
Cochrane (2005).

In the presence of a spurious (or weak) factor, that is, such that βj = C√
T
, C ∈ RN ,

risk premia are no longer identified. In particular, their estimates diverge (i.e., "λj ∕→ 0 as
T → ∞), leading to inference problems for both the useless and the strong factors (see,
e.g., Kan and Zhang (1999a,b) and Gospodinov, Kan, and Robotti (2017, 2019)), as well as
highly inflated cross-sectional fit (see Kleibergen and Zhan (2015)).

Consequently, plenty of frequentist statistical methods have been proposed to address the
weak identification of βf . Kleibergen (2009) presents several novel statistics that are robust
to weak factors. Gospodinov, Kan, and Robotti (2014) derive robust standard errors for
the risk premia estimates and show that the corresponding t-statistics are robust even when
the model is misspecified and a useless factor is included. Bryzgalova (2015) introduces a
penalized term in the FM regression to shrink the risk premium of the useless factor toward
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zero. Burnside (2016) suggests researchers use the tests of rank conditions of βf for model
reduction. Kleibergen and Zhan (2020) extend the GRS statistic in Gibbons, Ross, and
Shanken (1989) to test the identification of risk premia. Last but not least, Anatolyev
and Mikusheva (2022) adopt the idea of sample-splitting instrumental variable regressions,
and propose a new estimator that is robust to the weak factors and the presence of strong
unaccounted cross-sectional error dependence.

Different from the above solutions, we propose a hierarchical Bayesian analogue of the
two-pass regressions in equations (2)–(3). Despite being an essential concern in the fre-
quentist FM estimation, weak identification is of little consequence in this Bayesian setting.
Furthermore, in the absence of identification and misspecification problems, our Bayesian
method yields posteriors centred at the FM estimates and analogous inference. Our mod-
elling ingredients are rather standard. In the time-series dimension, we assume that ft and
Rt follow a joint multivariate normal distribution, which implies a Normal-inverse-Wishart
posterior distribution of the first two moments of the data under the flat prior. Conditional
on the sampled time-series parameters, the posterior distribution of ft’s risk premia is a
Dirac at the OLS or GLS estimates. As we show in the simulation studies, the Bayesian
credible intervals provided by our framework deliver appropriate coverages of the true risk
premia under the null hypothesis, regardless of strong or weak factors. Conversely, in the
same simulations, the frequentist analogues always over-reject the null of zero risk premia
for the weak factors.

The model in equation (1), as well as the two-pass regressions in equations (2)–(3),
assume that ft enter the stochastic discount factor and that no omitted factor can bias the
risk premia estimates. Nevertheless, these assumptions, although often made in the existing
empirical literature, are overly strong and fragile.1 Since the Bayesian Fama MacBeth (BFM)
OLS and GLS estimators inherit these assumptions, they are also under the same scrutiny.

To simultaneously address weak identification and omitted factor bias, we introduce
another Bayesian estimator, denoted as BFM-OMIT. This estimator shares the same spirit of
the three-pass regression of Giglio and Xiu (2021): Expected asset returns are explained by
the exposures to the unobserved latent factors, and an observable factor is priced because it
loads on the priced latent sources of risk. Instead of estimating the second step in equation
(3), we regress the average returns on the eigenvectors of the covariance matrix of asset
returns and next infer the risk premia of ft.

Unlike Giglio and Xiu (2021), we do not study a large cross-section (i.e., N << T ).

1For instance, Dickerson, Julliard, and Mueller (2024) and Bryzgalova, Huang, and Julliard (2023)
find that the stochastic discount factors for both corporate bonds and equities are dense in the space of
observable factors, and that the popular low dimensional models in the literature are misspecified with very
high probability.
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Although the traditional latent factor selection procedures (e.g., Bai and Ng (2002)) cannot
be applied in a small N setting, model selection and averaging can be conducted over the
entire eigenspace of the covariance matrix of asset returns (e.g., using the spike-and-slab
method of Bryzgalova, Huang, and Julliard (2023)). In the extreme case that all eigenvectors
are essential in explaining asset returns, BFM-OMIT is equivalent to finding the mimicking
portfolio by projecting the factor onto the entire original asset space.

The paper is organized as follows. Section 2 presents the Bayesian Fama-MacBeth meth-
ods. Section 3 studies the finite-sample performance of our estimators via Monte Carlo
simulations. We conclude in Section 4 by showing several empirical examples.

2 Inference in Linear Factor Models

This section introduces our hierarchical Bayesian Fama-MacBeth (BFM) estimation method.
Our ultimate goal is to estimate the risk premia of (tradable or nontradable) factors f , which
are defined as follows:

λf = −cov(ft,Mt), (4)

where Mt is the stochastic discount factor (SDF) that is normalized such that E[Mt] = 1.
The definition in equation (4) is natural for the tradable factors due to the fundamental
asset pricing equation, i.e., E[Mtft] = 0 if ft are tradable excess returns. For nontradable
f , we can interpret −cov(ft,Mt) as the expected excess returns on the pseudo assets with
stochastic growth rates ft.

In Subsection 2.1, we describe the baseline case without any omitted factor; that is, the
observable factors f fully capture the sources of priced risk. However, the assumption of
no omitted factor is strong (yet pervasive in the literature). Hence, in Subsection 2.2, we
present a simple modification of the baseline approach that accounts for omitted variable
bias in estimating factor risk premia.

2.1 Bayesian Fama-MacBeth without Omitted Factors

In this subsection, we assume that asset returns follow the data-generating process in equa-
tion (1)—the exposures to the observable factors ft are sufficient to explain expected returns.
Equivalently, this implies the following linear SDF:

Mt = 1− λ⊤
fΣ

−1
f (ft − µf ), (5)

which is consistent with the definition in equation (4). Hence, whenever we run the two-step
FM regression in equations (2)–(3) to estimate λf , we implicitly assume that ft are the only
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relevant pricing factors in the linear SDF.
We first consider the time-series dimension of the estimation. Let Yt = (R⊤

t ,f
⊤
t )

⊤, a
p× 1 vector (p = N +K).2 We assume that {Yt}Tt=1 follows an independent and identically
distributed (iid) multivariate Gaussian distribution, that is, Yt

iid∼ N (µY ,ΣY ), where µY

and ΣY are, respectively, the unconditional vector of means and covariance matrix of Yt.
This distributional assumption implies the following likelihood function for Yt:

p(Y | µY ,ΣY ) ∝ |ΣY |−
T
2 exp

#
−1

2
tr

$
Σ−1

Y

T%

t=1

(Yt − µY ) (Yt − µY )
⊤

&'
, (6)

where Y ≡ {Yt}Tt=1. For simplicity, we assign a diffuse prior to the parameters, π(µY ,ΣY ) ∝
|ΣY |−

p+1
2 , yielding the following posterior distribution of (µY ,ΣY ):3

µY ≡
(
µR

µf

)
| ΣY ,Y ∼ N (µ̂Y , ΣY /T ) , (7)

ΣY ≡
(

ΣR ΣRf

Σ⊤
Rf Σf

)
| Y ∼ W -1

*
T − 1, T Σ̂Y

+
, (8)

where µ̂Y ≡ 1
T

,T
t=1 Yt, Σ̂Y = 1

T

,T
t=1 (Yt − "µY ) (Yt − "µY )

⊤, and W -1 is the inverse-
Wishart distribution (a multivariate generalization of the inverse-gamma distribution).

Remark 1. The iid assumption of Yt can be relaxed using the approach in Müller (2013).
Specifically, replacing the posterior covariance matrix, ΣY /T , in equation (7) with a Newey
and West (1987)-type heteroskedasticity- and autocorrelation-consistent (HAC) sandwich es-
timator of the covariance matrix. Furthermore, since the cross-sectional layer (below) of the
BFM estimator is conditional on the draws from the posterior distribution of the time series
layer, Gaussianity of the latter could also be relaxed.

The Normal-inverse-Wishart posterior in equations (7)–(8) implies that we can sample
(µY ,ΣY ) sequentially: We first simulate the covariance matrix ΣY from the inverse-Wishart
distribution conditional on the data, and next conditional on the data and the draw of ΣY , we
draw µY from a multivariate normal distribution. We can further infer the factor exposures
of asset returns, βf ∈ RN×K , using ΣY : βf = ΣRfΣ

−1
f . Similarly, we can compute the

covariance matrix of εt in equation (2): Σ! = ΣR − ΣRfΣ
−1
f Σ⊤

Rf . Note that the above
posterior distribution is robust even if a weak factor is included in f . However, in the
presence of a weak factor, the covariance between returns and factors, ΣRf (so as βf ),

2If some factors in ft are tradable, we allow them to be test assets in Rt. In this case, Yt is the union
of factors and returns, i.e., Yt = ft ∪Rt.

3The full derivation of this step can be found in Appendix A1 of Bryzgalova, Huang, and Julliard (2023).
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converges to a singular matrix that will be later used as the regressors in the estimation of
factors’ risk premia.

If the model is correctly specified, in the sense that all true factors are included, expected
returns of the assets should be fully explained by their risk exposures, βf , and the prices of
risk λf , that is: µR = βfλf in population. Given (µR,βf ), we have the rather standard
least square estimate (β⊤

f βf )
−1β⊤

f µR.4 Therefore, we can define our first estimator.

Definition 1 (Bayesian Fama-MacBeth (BFM)). Conditional on µR, βf , and the data Y =

{Yt}Tt=1, under the null hypothesis of a correctly specified expected return-beta representation
(µR = βfλf), the posterior distribution of λf is a Dirac at (β⊤

f βf )
−1β⊤

f µR. Therefore,
conditional on Y = {Yt}Tt=1, we first sample µY,(j) and ΣY,(j) from the Normal-inverse-
Wishart distribution in equations (7)–(8), next compute βf,(j) = ΣRf,(j)Σ

−1
f,(j), and finally

compute λf,(j) = (β⊤
f,(j)βf,(j))

−1β⊤
f,(j)µR,(j).

The BFM estimator defined above accounts for both uncertainty about expected returns
(via the sampling of µR) and uncertainty about factor loadings (via the sampling of βf ).
Although the BFM estimator seems analogous to the frequentist FM approach, its hierarchi-
cal structure of posterior sampling enables us to detect weak and spurious factors in finite
samples. Similar to the frequentist case, the near singularity of (β⊤

f,(j)βf,(j))
−1 for weak

factors causes the draws of λf,(j) to diverge. Nevertheless, β⊤
f,(j)µR,(j) tends to switch sign

across draws because the posterior distribution of βf for a weak factor is centred at around
zero. Hence, the BFM estimator of λf puts substantial probability mass on both values
above and below zero, and the resulting posterior credible intervals tend to include zero with
high probability, making weak factors easily detectable.

The cross-sectional step of the FM regression is often performed via GLS rather than least
squares. In our setting, under the null of the model, this leads to λ̂ = (β⊤

f Σ
−1
! βf )

−1β⊤
f Σ

−1
! µR.

Therefore, we define the following GLS-type estimator.

Definition 2 (Bayesian Fama-MacBeth GLS (BFM-GLS)). Conditional on µR, βf , Σ!, and
Y = {Yt}Tt=1, under the null hypothesis of a correctly specified expected return-beta represen-
tation (µR = βfλf), the posterior distribution of λf is a Dirac at (β⊤

f Σ
−1
! βf )

−1β⊤
f Σ

−1
! µR.

Therefore, conditional on Y = {Yt}Tt=1, we first sample µY,(j) and ΣY,(j) from the Normal-
inverse-Wishart (7)–(8), compute βf,(j) = ΣRf,(j)Σ

−1
f,(j), Σ!,(j) = ΣR,(j)−ΣRf,(j)Σ

−1
f,(j)Σ

⊤
Rf,(j),

and finally obtain λf,(j) = (β⊤
f,(j)Σ

−1
!,(j)βf,(j))

−1β⊤
f,(j)Σ

−1
!,(j)µR,(j).

Our Bayesian framework can also quantify the posterior uncertainty about the cross-
sectional fit of the model, that is, the cross-sectional R2. Conditional on the posterior draws

4We can further include a common intercept in the cross-sectional regression. That is, µR = βλ, where
β = (1N ,βf ) and λ = (λc,λ

⊤
f )

⊤. The least square estimate of λ is then (β⊤β)−1β⊤µR.
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of the parameters, we can easily obtain the posterior distribution of R2, defined as

R2
ols = 1−

(µR − βfλf )
⊤(µR − βfλf )

(µR − µ̄R1N )⊤(µR − µ̄R1N )
, R2

gls = 1−
(µR − βfλf,gls)

⊤Σ−1
! (µR − βfλf,gls)

(µR − µ̄R1N )⊤Σ−1
! (µR − µ̄R1N )

, (9)

where µ̄R = 1
N

,N
i µRi. That is, for each posterior draw of (µR, βf , λf , Σ!), we can

construct the corresponding draw for the R2 from equation (9), hence tracing out its posterior
distribution. We can think of equation (9) as the population R2, where µR, βf , λf , and
Σ! are unknown. After observing the data, we infer the posterior distribution of µR, βf ,
λf , and Σ!, and from these we can recover the distribution of the R2. Furthermore, we
can estimate the posterior distribution of other test statistics, such as the cross-sectional T 2

statistic of Shanken (1985) and the F -statistic of Gibbons, Ross, and Shanken (1989).
The assumption that factor loadings βf can entirely explain expected returns is likely

too good to be true. Nevertheless, we can allow for the presence of pricing errors in the
cross-sectional dimension: µR = βfλf +α, where α is a N×1 vector of pricing alphas. The
BFM estimator in Definition 1 (the BFM-GLS estimator in Definition 2) remains consistent
under the canonical assumption β⊤

f α = 0 (β⊤
f Σ

−1
! α = 0).

2.2 Accounting for Omitted Factors

The BFM estimators in Subsection 2.1 rely on the tenuous assumption that a predetermined
set of observable factors f subsumes all the pricing information in the SDF. Empirically,
researchers are often concerned with omitting other pricing factors, which may lead to biased
estimates of factors’ risk premia. Past literature (see, e.g., Burmeister and McElroy (1988))
has acknowledged the omitted variable bias, but Giglio and Xiu (2021) is the first to formally
propose a solution to estimate risk premia in the presence of omitted factors. We now show
how to handle omitted factors within the BFM framework.

We follow Giglio and Xiu (2021) and estimate the risk premium of each factor separately.5

In particular, we consider an univariate ft, and assume the data-generating process:

ft = µf + η⊤
f vt + wt, Rt = βvλv + βvvt + εt, Σv = IP , vt ⊥ wt ⊥ εt, (10)

where the vector vt denotes P latent systematic factors that are normalized to be uncor-
related and have mean zero. Moreover, expected asset returns are fully explained by the
exposures to vt, and ft loads on vt and possibly contains an unspanned component wt (e.g.,
measurement error).

The data-generating process in equation (10) is equivalent to the following linear SDF:

Mt = 1− λ⊤
vΣ

−1
v vt = 1− λ⊤

v vt, (11)
5In their language, “estimating the risk premium for one factor does not affect the estimation for the

others at all, another important property of our estimator.”
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which implies that λf = λ⊤
v ηf , using the definition of risk premia in equation (4).

Remark 2. For expositional simplicity, we follow the canonical assumption that the latent
factors are strong, in that the eigenvalues of β⊤

v βv coincide with the largest P eigenvalues
of ΣR. Yet, canonical latent factor selection procedures (e.g., Bai and Ng (2002)), which
require both N and T to be sufficiently large, may not be appropriate with small N relative
to T . In this case, model selection (and even Bayesian model averaging of the SDF) can
be conducted over the space of latent factors using the spike-and-slab method of Bryzgalova,
Huang, and Julliard (2023) to determine which columns in βv explain expected returns µR.
This differs from traditional latent factor selection in that it leverages cross-sectional pricing
information, instead of merely fitting the time-series variation of returns.

To show how to control for omitted factors, we first rewrite the SDF in equation (11) as
the sum of two orthogonal components:

Mt = 1− (η⊤
f λv)

⊤(η⊤
f ηf )

−1η⊤
f vt − (H⊤

1 λv)
⊤(H⊤

1 H1)
−1H⊤

1 vt, (12)

where H⊤
1 vt are the omitted latent factors, and H1 is chosen such that H⊤

1 vt are orthogonal
to the priced component of the observable factor, η⊤

f vt.
Two major differences between the SDFs in equations (5) and (12) are noteworthy. First,

only the spanned component of ft, denoted as η⊤
f vt, enters the SDF in equation (12), whereas

the unspanned element wt is eliminated. Second, H⊤
1 vt are the priced components omitted

by ft. As Giglio and Xiu (2021) show, including the omitted latent factors as control is key
to recovering the risk premium of the observable factor.

We now discuss the choice of H1 from the theoretical perspective. In particular, we aim
to rotate vt to (η⊤

f vt,H1vt) such that the SDF in equation (12) contains the same pricing
information as that in equation (11). Using the SDF in equation (12), we can derive the
beta-pricing representation as follows:

µR = −cov(Rt,Mt) = βvηf (η
⊤
f ηf )

−1η⊤
f λv + βvH1(H

⊤
1 H1)

−1H⊤
1 λv = βvλv,

which implies that ηf (η
⊤
f ηf )

−1η⊤
f + H1(H

⊤
1 H1)

−1H⊤
1 = IP . Note that the rank of IP −

ηf (η
⊤
f ηf )

−1η⊤
f is P − 1 when ηf is not a zero vector. Hence, a natural choice of H1 is a

P×(P−1) matrix collecting the first (P−1) columns of the unitary matrix from the singular
value decomposition (SVD) of IP − ηf (η

⊤
f ηf )

−1η⊤
f : That is, H⊤

1 H1 = IP−1, H⊤
1 ηf = 0,

and H1H
⊤
1 = IP − ηf (η

⊤
f ηf )

−1η⊤
f .

BFM does not directly estimate ηf . Instead, conditional on the time-series step (again
given by the posterior distributions in equations (7)–(8)), we obtain the estimates of ΣR

and βf (= ΣRf/σ
2
f ). We then identify βv as the eigenvectors of ΣR corresponding to the
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P largest eigenvalues,6 and ηf equals (β⊤
v βv)

−1β⊤
v ΣRf , which is further used to identify

H1. Based on µR = βṽλṽ, where βṽ = (βf ,βvH1), the risk premia estimates, λṽ, are
(β⊤

ṽ βṽ)
−1β⊤

ṽ µR, and λf is the first element of λṽ. Therefore, the BFM estimators with
omitted factors are equivalent to those in Definitions 1 and 2 by replacing βf with βṽ,
yielding the risk premium estimate of ft: λf = σ2

f (η
⊤
f ηf )

−1η⊤
f λv.

The BFM estimator with the additional control (βvH1) is robust to the presence of
spurious and omitted factors. Nevertheless, ft’s risk premium based on these FM regressions
has an unsatisfactory property, as highlighted in the Remark below.

Remark 3. The BFM estimate, λf = σ2
f (η

⊤
f ηf )

−1η⊤
f λv, differs from the definition in equa-

tion (4), where λf = η⊤
f λv, by a scale factor capturing the proportion of variation in

ft explained by the spanned component η⊤
f vt (i.e., η⊤

f ηf/σ
2
f). The existence of the term

σ2
f (η

⊤
f ηf )

−1 = 1 + σ2
w(η

⊤
f ηf )

−1 is economically unsound: As the variance of the unspanned
component wt increases, the FM estimates of risk premia are mechanically inflated. This
is inconsistent with canonical portfolio choice theory, which conjectures that unspanned risk
should not be compensated. This inconsistency always exists unless ft is fully spanned by the
sources of risk in the SDF (equivalently, σ2

w = 0). Moreover, the scale factor captures exactly
the source of weak identification: (η⊤

f ηf )
−1 tends to be singular for a weak factor.

To resolve the above inconsistency, we leverage the definition of risk premium in equation
(4), −cov(Mt, ft) = η⊤

f λv, where the unspanned component no longer determines the risk
compensation.7 That is, instead of directly estimating λf , we revise the second (cross-
sectional) step of the canonical FM estimation to be over the space of latent factors: We
regress µR on βv to obtain the risk premia of latent factors vt, λv = (β⊤

v βv)
−1β⊤

v µR. Since
the time-series step in equations (7)–(8) determines ηf , which equals (β⊤

v βv)
−1β⊤

v ΣRf , the
natural estimate of ft’s risk premium is then λf = λ⊤

v (β
⊤
v βv)

−1β⊤
v ΣRf . This modified

version of the BFM estimator is summarized in Definition 3.

Definition 3 (Bayesian Fama-MacBeth with omitted factors (BFM-OMIT)). Conditional
on the j-th posterior draw of the first two moments of the data, including µR,(j), βf,(j),
ΣR,(j), ΣRf,(j), and the data Y = {Yt}Tt=1, we perform the eigendecomposition of ΣR,(j),

ΣR,(j) = U(j)Λ(j)U
⊤
(j), and identify βv,(j) as the first P columns of U(j)Λ

1
2

(j). Under the
null hypothesis of a correctly specified expected return-beta representation (µR = βvλv), the

6Consider the eigendecomposition of ΣR: ΣR = UΛU⊤. βv collect the first P columns of UΛ
1
2 .

7This definition of risk premium satisfies the rotation invariance property, as highlighted in Giglio and
Xiu (2021). For any nonsingular matrix A ∈ RP×P , let zt = Avt be the rotated latent factors, and βz =
βvA

−1. This rotation implies that the loadings of ft on zt is equal to cov(ft, zt)Σ
−1
z = η⊤

f A
⊤(AA⊤)−1 =

η⊤
f A

−1. Moreover, the risk premium of zt is λz = (β⊤
z βz)

−1β⊤
z µR = Aλv. Hence, the risk premia of ft is

η⊤
f A

−1λz = η⊤
f λv. In short, the risk premium of ft is invariant to any nonsingular rotation of vt.
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posterior distribution of λv,(j) is a Dirac at (β⊤
v,(j)βv,(j))

−1β⊤
v,(j)µR,(j), and the risk premium

of ft is λf,(j) = λ⊤
v,(j)(β

⊤
v,(j)βv,(j))

−1β⊤
v,(j)ΣRf,(j).

We now simplify the formulation of λf to gain economic insights. Consider the eigen-
decomposition of ΣR: ΣR = UΛU⊤. Since ΣR is drawn from its posterior distribution in
equation (8), the estimation uncertainty of the entire eigenspace of ΣR is fully accounted.
We let UP collect the first P columns of U , and ΛP collect the first P rows and columns
of Λ. We can then show that λf = Σ⊤

RfUPΛ
−1
P U⊤

P µR. Note that U⊤
P µR are the expected

returns of the first P PCs of Rt, i.e., U⊤
P Rt, with a covariance matrix ΛP , and Σ⊤

RfUPΛ
−1
P

is the loadings of ft on the PCs U⊤
P Rt. Therefore, λf can be interpreted as the expected

return of the factor-mimicking portfolio that consists of PCs. A special case is P = N , which
implies that λf = Σ⊤

RfΣ
−1
R µR. In this case, we project ft onto the original asset space with

a dimension N . Although Σ⊤
RfΣ

−1
R µR is theoretically a more robust estimator of λf , the

estimate of Σ−1
R tends to be rather noisy due to highly correlated asset returns. Employing

PCs can be seen as an empirical shortcut to reduce the dimensionality and to approximate
the priced source of risk in the nontraded factor.

Finally, we can relax the assumption of zero pricing errors in equation (10): µR =

βvλv + α, where α ⊥ βv. The latter orthogonality assumption is theoretically not as
restrictive as the one in Section 2.1 because we can always include a relatively large number
of latent factors and select the priced ones (as described in Remark 2) to ensure α and λv

to be as orthogonal as possible.

3 Simulation

We now investigate the performance of our BFM estimators via Monte Carlo simulations.
We consider both strong and weak factors, and allow for potential misspecification in the
linear factor model.

The cross-section of excess returns comprises the 25 Fama-French portfolios sorted by size
and value, plus 12 industry portfolios. Factors and test asset returns are simulated jointly
from normal distributions, as follows:

ft,useless
iid∼ N (0, (1%)2),

(
Rt

ft,hkm

)
iid∼ N

($
µ̄R

f̄hkm

&
,

$
Σ̂R

"Chkm

"C⊤
hkm "σ2

hkm

&)
, (13)

where the nontraded intermediary factor from He, Kelly, and Manela (2017) (HKM factor)
is the strong factor, the mean vector and covariance matrix of (R⊤

t , ft,hkm) are calibrated
as their sample estimates, and the useless factor is simulated from an independent standard
normal distribution. All the model parameters are estimated on monthly data from January
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1970 to December 2019.
The fundamental element in simulations is the vector of expected asset returns, µ̄R. We

consider two settings that are mapped into the frameworks in Sections 2.1 and 2.2.
First, we assume that the HKM factor is in the linear SDF, but it does not fully explain

the expected returns, with pricing errors orthogonal to the factor loadings, as follows:

µ̄R =
"Chkm

"σ2
hkm

"λhkm + "αhkm, "αhkm ⊥ "Chkm, (14)

where "λhkm is estimated via the two-step FM procedure, and pricing errors "αhkm are cal-
ibrated such that they are orthogonal to factor exposures and that the pseudo-true cross-
sectional adjusted R2

ols is about 50.2% (and R2
gls = 37.0%).

To illustrate the properties of the frequentist and Bayesian approaches in the simulation
based on equation (14), we consider three estimation setups: (a) the model includes only a
strong factor (HKM); (b) the model includes only a useless factor; and (c) the model includes
both strong and useless factors, with the following sample sizes: T = 200, 600, 1,000, and
20,000. We compare the performance of the OLS/GLS standard frequentist and Bayesian
Fama-MacBeth estimators (FM and BFM, correspondingly) with the focus on risk premia
recovery, testing, and identification of strong and useless factors.

Panel A of Table 1 reports the simulation results where the data are drawn from equa-
tions (13) and (14), and the strong and weak factors are simultaneously included in the
regressions. We compare the performance of the frequentist Fama-MacBeth tests, which
are constructed using standard t-statistics adjusted for Shanken correction, with our BFM
estimators described in Definitions 1 and 2. In the BFM and BFM-GLS, we rely on the
quantiles of the posterior distribution to form credible intervals for parameters. The last two
columns also report the quantiles of the posterior means of R2 across the simulations. We
observe that the cross-sectional fit is rather noisy, with wide 90% confidence intervals across
simulations, even in a relatively large sample of 1,000 months. Moreover, as pointed out by
the previous literature, the canonical frequentist Fama-MacBeth often over-rejects the null
hypothesis of zero risk premia for useless factors: Its OLS/GLS t-statistic would be above
a 10%-critical value in more than 60% of the simulations. In contrast, our BFM estimators
tend to deliver the proper coverages of the true values, and reject the null of no risk premia
with frequency asymptotically approaching the size of the tests.8

In the second simulation setup, expected returns are explained by their exposures to

8Table A1 in the appendix reports the estimation results in which strong and weak factors are individually
estimated by the frequentist and Bayesian Fama-MacBeth regressions. The simulation results are similar to
those in Panel A of Table 1. Note that a common intercept is not included in the cross-sectional step; hence,
the adjusted R2 can be significantly negative in some simulations.
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Table 1: Tests of risk premia in a misspecified model with both useless and strong factors
λstrong λuseless R2

adj

T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: Simulations based on equations (13) and (14)

200 0.086 0.036 0.005 0.066 0.018 0.000 -29.4% 48.5%
FM-OLS 600 0.095 0.047 0.006 0.100 0.036 0.001 -10.2% 56.1%

1,000 0.088 0.038 0.008 0.126 0.046 0.002 3.7% 58.9%
20,000 0.098 0.046 0.010 0.634 0.513 0.217 42.6% 60.3%
200 0.048 0.016 0.002 0.001 0.001 0.000 -13.9% 24.3%

BFM-OLS 600 0.083 0.033 0.007 0.007 0.002 0.000 -5.0% 37.7%
1,000 0.078 0.033 0.005 0.008 0.003 0.001 3.1% 43.5%
20,000 0.065 0.031 0.003 0.078 0.035 0.008 43.0% 56.5%
200 0.102 0.050 0.006 0.194 0.116 0.036 -31.3% 31.3%

FM-GLS 600 0.105 0.051 0.011 0.246 0.160 0.062 -11.7% 38.6%
1,000 0.094 0.049 0.009 0.291 0.207 0.091 -2.8% 40.5%
20,000 0.092 0.048 0.013 0.678 0.620 0.521 23.9% 39.4%
200 0.060 0.018 0.001 0.020 0.005 0.001 -0.7% 25.3%

BFM-GLS 600 0.089 0.041 0.007 0.028 0.011 0.001 2.2% 31.9%
1,000 0.085 0.038 0.009 0.035 0.009 0.000 7.6% 35.0%
20,000 0.082 0.039 0.007 0.084 0.044 0.011 30.7% 40.8%

Panel B: Simulations based on equations (13) and (15)
200 0.197 0.128 0.030 0.124 0.049 0.002 -37.8% 31.1%

FM-OLS 600 0.398 0.278 0.108 0.233 0.128 0.018 -27.4% 26.5%
1,000 0.558 0.428 0.220 0.323 0.186 0.033 -21.8% 24.9%
20,000 0.963 0.950 0.894 0.795 0.727 0.446 -6.1% 19.2%
200 0.110 0.054 0.009 0.322 0.232 0.116 -34.7% 14.0%

FM-GLS 600 0.120 0.058 0.015 0.460 0.378 0.240 -23.1% 10.7%
1,000 0.107 0.059 0.012 0.510 0.436 0.296 -20.3% 9.6%
20,000 0.178 0.120 0.044 0.758 0.712 0.631 -13.9% 5.1%
200 0.052 0.017 0.001 0.004 0.000 0.000 26.5% 59.2%

BFM-OMIT (P = 5) 600 0.092 0.041 0.008 0.041 0.013 0.001 21.2% 58.6%
1,000 0.087 0.039 0.005 0.053 0.020 0.001 22.0% 57.4%
20,000 0.094 0.049 0.008 0.097 0.041 0.008 38.4% 48.9%
200 0.057 0.020 0.001 0.007 0.001 0.000 12.6% 49.2%

BFM-OMIT (P = 3) 600 0.093 0.048 0.009 0.062 0.022 0.003 9.4% 50.4%
1,000 0.097 0.049 0.011 0.066 0.025 0.004 10.5% 48.9%
20,000 0.466 0.329 0.137 0.096 0.044 0.007 25.0% 37.1%
200 0.053 0.020 0.001 0.005 0.000 0.000 31.6% 64.1%

BFM-OMIT (P = 6) 600 0.090 0.040 0.008 0.043 0.014 0.001 24.6% 62.1%
1,000 0.089 0.039 0.005 0.054 0.021 0.001 25.7% 60.2%
20,000 0.094 0.049 0.008 0.093 0.043 0.008 36.8% 47.7%

Frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λstrong and λ∗

useless ≡ 0 in
a misspecified model with a strong and a useless factor. Last two columns: 5th and 95th percentiles of cross-
sectional R2

adj across 2,000 simulations, evaluated at the point estimates for FM and at the posterior mean
for BFM. In Panel A, the data are simulated based on equations (13) and (14), with the true value of R2

adj

equal to 50.2% (37.0%) for OLS (GLS) estimation. In this simulation setup, we compare the frequentist FM
methods with our BFM estimators in Definitions 1 and 2. In Panel B, we simulate the data from equations
(13) and (15), with the true R2

adj equal to 44.0%. We estimate the risk premia based on the BFM-OMIT
method in Definition 3. As a comparison, we also show the OLS/GLS frequentist FM estimates.
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latent factors. The HKM factor, instead, does not enter the SDF and is priced because it
loads on these priced latent factors. In this case, we assume the formulation of µ̄R as follows:

µ̄R = "βv
"λv + "αv, "αv ⊥ "βv, (15)

where "βv are calibrated as the eigenvectors of Σ̂R corresponding to the largest five eigen-
values, and "λv and "αv are the sample estimates from the two-step regression. Unlike the
simulations based on equation (14), we estimate the risk premia of strong and weak factors
individually in this simulation setting.

In Panel B of Table 1, we investigate the performance of our BFM-OMIT estimator in
Definition 3. Not surprisingly, the traditional frequentist FM estimates are biased—which
can be seen from the over-rejection of the null hypothesis—due to the omitted variable
bias, measurement error, and weak identification of the simulated factors. In contrast, our
BFM-OMIT estimator, using the correct number of latent components (Panel with P = 5),
provides appropriate posterior coverages for the true risk premia, no matter whether a factor
is strong or weak. Next, we take a more conservative strategy to include one additional,
unpriced latent factor into the cross-sectional step (Panel with P = 6)—similar simulation
results are obtained. Nevertheless, the correctness of the BFM-OMIT approach requires us
to include a sufficient amount of latent factors in the cross-sectional step. For instance, when
the number of latent components is three (P = 3), the risk premia estimates of the strong
factor are significantly biased asymptotically.

4 Empirical Examples

This section applies the BFM methods to estimate the risk premia of real durable and
nondurable consumption growth, as well as the nontraded HKM intermediary factor.9 As
a comparison, we report the frequentist FM estimates. We use the same cross-section of
37 equity portfolios as in the simulation studies. Table 2 reports the risk premia estimates
(the λf columns) and the cross-sectional fit (the R2

adj columns). For the frequentist FM
regressions, we report the t-statistics within the parentheses, whereas the 90% posterior
credible intervals (CIs) are shown in the square brackets for the BFM estimates.

Our BFM estimators in Definitions 1 and 2 are robust to the weak identification. Take
durable consumption growth, for example. Note that durable consumption growth has a
weak correlation with asset returns and, hence, is very likely to be a weak factor. Although
the frequentist FM-OLS estimate of its risk premium is significant at the 10% significance

9Data on durable and nondurable consumption growth are from Table 7.1 of the Bureau of Economic
Research. The HKM intermediary factor is downloaded from the authors’ websites.
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Table 2: Risk premia estimates of three examples

Frequentist FM BFM BFM-OMIT
FM-OLS FM-GLS BFM-OLS BFM-GLS P = 5 P = 10
λf R2

adj λf R2
adj λf R2

adj λf R2
adj λf R2

adj λf R2
adj

Panel A. Quarterly durable consumption growth: 1963Q3–2019Q4
1.468 -418% -0.105 -40% 1.111 -514% -0.072 -29% 0.000 37% 0.017 61%

(1.892) (-0.487) [-0.264, 2.184] [-0.383, 0.236] [-0.060, 0.061] [-0.057, 0.090]

Panel B. Quarterly nondurable consumption growth: 1963Q3–2019Q4
1.266 -39% 0.375 -35% 1.318 -137% 0.235 -27% 0.034 37% 0.045 61%

(2.141) (1.716) [0.455, 2.637] [-0.099, 0.575] [-0.015, 0.086] [-0.022, 0.113]

Panel C. HKM intermediary factor: 1970M1–2019M12
0.188 -48% 0.119 -46% 0.188 -35% 0.118 -34% 0.112 23% 0.099 50%

(3.341) (2.514) [0.092, 0.284] [0.035, 0.201] [0.057, 0.167] [0.040, 0.158]

This table reports the risk premia estimates of three economic factors (real durable and nondurable con-
sumption growth, and the HKM intermediary factor) in the cross-section of 25 Fama-French size- and value-
sorted portfolios plus 12 industry portfolios. The estimations are based on the traditional frequentist FM
regression, our BFM approach in Definitions 1 and 2, and the BFM-OMIT method in Definition 3. We esti-
mate their risk premia individually, excluding the common intercept in the cross-sectional step. We report
both the risk premia estimates (λf ) and the cross-sectional fit (adjusted R2 defined in equation (9)). In
addition to the point estimates, we tabulate the t-statistics of λf (see the numbers within parentheses) in
the frequentist FM estimation and the 90% posterior credible intervals (see the numbers with brackets) of
λf in the BFM and BFM-OMIT methods.

level, the 90% CIs given by BFM-OLS contain the zero risk premium; hence, in the Bayesian
method, we cannot reject the null hypothesis of zero risk premium. This observation echoes
our previous simulation studies, which show that weak identification is inconsequential in
our Bayesian methods.

Nevertheless, BFM-OLS and BFM-GLS are built upon the assumption that the single
factor itself is the only relevant priced source of risk in the SDF, which is, ex-post, almost
impossible due to the extremely negative cross-sectional R2.10

To account for the model misspecification, we repeat the same exercise using the BFM-
OMIT approach described in Definition 3. Unlike the models containing only univariate ob-
servable factors, the five (ten) latent factors explain 23–37% (50–61%) of the cross-sectional
variation. Also, risk premia estimates based on BFM-OMIT tend to be smaller than those of
frequentist FM or BFM. For instance, nondurable consumption growth commands a signif-
icantly positive risk premium (about 1.3) in both FM and BFM OLS estimations, whereas
the BFM-OMIT estimates (0.034–0.045) are tiny and not statistically significant.

Different from the two consumption growth measures, the HKM factor is consistently
priced in the cross-section. Although the factor itself cannot explain the cross-sectional
spreads of average returns, it loads on the priced latent factors and, therefore, commands a
significantly positive risk premium. This observation echoes the discussion in Chapter 13.4

10Note that the (adjusted) R2s are negative for most entries because a common intercept is not included
in the cross-sectional step of the two-step estimation.
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of Cochrane (2005): A factor being priced (that is, the factor-mimicking portfolio carrying a
significant risk premium) is distinct from a factor entering the SDF (that is, a factor capable
of pricing assets given the other factors). As a final caveat to the cross-sectional step in the
two-pass regressions, researchers should not regress mean asset returns (µR) on the beta
loadings on the observable factor (βf ) to obtain the risk premium estimate, unless they have
strong beliefs that the priced risks in the SDF completely span the tested factor.
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Appendix

Table A1: Tests of risk premia in a misspecified model with either strong or useless factors
Only a strong factor Only a useless factor

λstrong R2
adj λuseless R2

adj

T 10% 5% 1% 5th 95th 10% 5% 1% 5th 95th
Panel A: OLS

200 0.096 0.040 0.006 -35.3% 40.6% 0.046 0.010 0.000 -2069.4% -2.7%
FM 600 0.104 0.050 0.009 -13.8% 51.6% 0.151 0.051 0.002 -2658.3% -43.1%

1,000 0.096 0.043 0.009 0.1% 54.9% 0.203 0.078 0.004 -2901.4% -67.9%
20,000 0.101 0.056 0.011 41.9% 55.4% 0.311 0.166 0.041 -2998.3% -129.4%
200 0.060 0.020 0.003 -23.0% 17.3% 0.023 0.004 0.001 -909.8% -80.2%

BFM 600 0.091 0.042 0.008 -12.6% 33.0% 0.083 0.042 0.005 -1393.2% -179.2%
1,000 0.090 0.042 0.008 -3.4% 39.6% 0.092 0.041 0.007 -1567.4% -270.8%
20,000 0.107 0.054 0.013 40.8% 54.0% 0.109 0.052 0.012 -1868.7% -604.1%

Panel B: GLS
200 0.104 0.054 0.007 -16.3% 33.3% 0.072 0.039 0.012 -530.4% 2.3%

FM 600 0.110 0.054 0.010 -1.9% 40.9% 0.052 0.028 0.009 -666.7% -1.6%
1,000 0.096 0.048 0.011 5.9% 42.2% 0.038 0.018 0.005 -733.9% -10.3%
20,000 0.100 0.048 0.012 29.5% 39.6% 0.032 0.021 0.013 -855.9% -25.8%
200 0.063 0.024 0.002 -1.4% 24.2% 0.023 0.006 0.000 -5.4% 17.7%

BFM 600 0.091 0.043 0.008 2.2% 31.7% 0.035 0.011 0.002 -4.2% 20.2%
1,000 0.086 0.041 0.008 7.6% 35.1% 0.041 0.016 0.001 -1.3% 21.6%
20,000 0.100 0.044 0.013 30.8% 40.4% 0.078 0.042 0.010 12.7% 21.0%

Frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λ∗

i in a misspecified model
with either a strong or a useless factor. Last two columns: 5th and 95th percentiles of cross-sectional R2

adj

across 2,000 simulations, evaluated at the point estimates for FM and at the posterior mean for BFM. The
data are simulated based on equations (13) and (14), and the strong and weak factors are individually
included in the regressions. The true value of the cross-sectional R2

adj is 50.2% (37.0%) for the OLS (GLS)
estimation.
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